Acute Effects of Using Individual Velocity Targets to Regulate Resistance Training Load

Main Article Content

Samuel T. Orange
https://orcid.org/0000-0003-4734-1446
Connor Guerin
Cameron Taylor
https://orcid.org/0009-0000-6803-1282
Louis Poole
Kathleen Sanger
Sam Clarke
https://orcid.org/0009-0005-6304-9180
Leah Goodley
Charlie Bradbury
https://orcid.org/0009-0006-1841-1803
Will Pearmain
https://orcid.org/0009-0003-0561-9849

Abstract

We determined the acute biomechanical, physiological, and perceptual effects of using individualised velocity targets (IVT) or a percentage of one repetition maximum (%1RM) to regulate resistance training load. Thirty-nine resistance-trained adults (age: 21.8±3.2 years) completed two strength training sessions (five sets of five free-weight back squats) in a randomised, counterbalanced order. The %1RM session involved using a fixed load at 80% 1RM, whereas the IVT session used a modifiable load corresponding to the mean velocity at 80% 1RM. Kinetic and kinematic data and rating of perceived exertion (RPE) were recorded during training sessions. Countermovement jump (CMJ) height and blood lactate concentration were measured pre- and post-session, and perceived muscle soreness and fatigue were measured 24-hours post-exercise using 10-point Likert scales. We used null-hypothesis significance testing to test for differences between conditions and two one-sided tests (TOST) to assess equivalence. IVT significantly increased sessional mean velocity (mean difference=0.05 m·s-1), peak velocity (0.08 m·s-1), mean power (54.4 W), and peak power (141 W), while significantly reducing barbell load (-2.7 kg), RPE (-0.49), time under tension (-0.13 s), and velocity loss (0.02 m·s-1), compared to %1RM. IVT and %1RM had equivalent effects on post-exercise perceived fatigue (0.11, 10-point-scale) and pre-post changes in blood lactate (-0.50 mmol/L) and CMJ height (-0.75 cm). In conclusion, using individualised velocity targets to regulate resistance training load increases movement velocity in repeated sets of free-weight back squats but does not meaningfully influence markers of post-exercise fatigue compared to %1RM.

Metrics

Metrics Loading ...

Article Details

How to Cite
Orange, S. T., Guerin, C., Taylor, C., Poole, L., Sanger, K., Clarke, S., … Pearmain, W. (2025). Acute Effects of Using Individual Velocity Targets to Regulate Resistance Training Load. Communications in Kinesiology, 1(6). https://doi.org/10.51224/cik.2024.69 (Original work published December 16, 2024)
Section
Training and Performance Analysis

References

Almåsbakk, B., & Hoff, J. (1996). Coordination, the determinant of velocity specificity? Journal of Applied Physiology, 81(5), 2046–2052. https://doi.org/10.1152/jappl.1996.81.5.2046

Attia, A., Dhahbi, W., Chaouachi, A., Padulo, J., Wong, D., & Chamari, K. (2017). Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump. Biology of Sport, 1, 63–70. https://doi.org/10.5114/biolsport.2017.63735

Balsalobre-Fernández, C., & Torres-Ronda, L. (2021). The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports, 9(4), 47. https://doi.org/10.3390/sports9040047

Balshaw, T. G., Massey, G. J., Maden-Wilkinson, T. M., Tillin, N. A., & Folland, J. P. (2016). Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. Journal of Applied Physiology, 120(11), 1364–1373. https://doi.org/10.1152/japplphysiol.00091.2016

Banyard, H. G., Nosaka, K., Sato, K., & Haff, G. G. (2017). Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. International Journal of Sports Physiology and Performance, 12(9), 1170–1176. https://doi.org/10.1123/ijspp.2016-0627

Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. International Journal of Sports Physiology and Performance, 14(2), 246–255. https://doi.org/10.1123/ijspp.2018-0147

Dambroz, F., Clemente, F., Calvo, T., Williams, M., & Teoldo, I. (2021). The Effect of Physical Fatigue on the Performance of Soccer Players: A Systematic Review. https://doi.org/10.37766/inplasy2021.5.0054

Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. Journal of Strength and Conditioning Research, 25(2), 556–560. https://doi.org/10.1519/jsc.0b013e3181ccb18d

Greig, L., Stephens Hemingway, B. H., Aspe, R. R., Cooper, K., Comfort, P., & Swinton, P. A. (2020). Autoregulation in Resistance Training: Addressing the Inconsistencies. Sports Medicine, 50(11), 1873–1887. https://doi.org/10.1007/s40279-020-01330-8

Halperin, I., Malleron, T., Har-Nir, I., Androulakis-Korakakis, P., Wolf, M., Fisher, J., & Steele, J. (2021). Accuracy in Predicting Repetitions to Task Failure in Resistance Exercise: A Scoping Review and Exploratory Meta-analysis. Sports Medicine, 52(2), 377–390. https://doi.org/10.1007/s40279-021-01559-x

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine & Science in Sports & Exercise, 41(1), 3–12. https://doi.org/10.1249/mss.0b013e31818cb278

Impellizzeri, F. M., & Maffiuletti, N. A. (2007). Convergent Evidence for Construct Validity of a 7-Point Likert Scale of Lower Limb Muscle Soreness. Clinical Journal of Sport Medicine, 17(6), 494–496. https://doi.org/10.1097/jsm.0b013e31815aed57

Jukic, I., Castilla, A. P., Ramos, A. G., Van Hooren, B., McGuigan, M. R., & Helms, E. R. (2022). The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Medicine, 53(1), 177–214. https://doi.org/10.1007/s40279-022-01754-4

Lakens, D. (2017). Equivalence Tests. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177

Orange, S. T., Hritz, A., Pearson, L., Jeffries, O., Jones, T. W., & Steele, J. (2022). Comparison of the effects of velocity-based vs. traditional resistance training methods on adaptations in strength, power, and sprint speed: A systematic review, meta-analysis, and quality of evidence appraisal. Journal of Sports Sciences, 40(11), 1220–1234. https://doi.org/10.1080/02640414.2022.2059320

Orange, S. T., Metcalfe, J. W., Liefeith, A., & Jordan, A. R. (2020). Validity of various portable devices to measure sit-to-stand velocity and power in older adults. Gait & Posture, 76, 409–414. https://doi.org/10.1016/j.gaitpost.2019.12.003

Orange, S. T., Metcalfe, J. W., Liefeith, A., Marshall, P., Madden, L. A., Fewster, C. R., & Vince, R. V. (2019). Validity and Reliability of a Wearable Inertial Sensor to Measure Velocity and Power in the Back Squat and Bench Press. Journal of Strength and Conditioning Research, 33(9), 2398–2408. https://doi.org/10.1519/jsc.0000000000002574

Orange, S. T., Metcalfe, J. W., Marshall, P., Vince, R. V., Madden, L. A., & Liefeith, A. (2020). Test-Retest Reliability of a Commercial Linear Position Transducer (GymAware PowerTool) to Measure Velocity and Power in the Back Squat and Bench Press. Journal of Strength and Conditioning Research, 34(3), 728–737. https://doi.org/10.1519/jsc.0000000000002715

Orange, S. T., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2020). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. International Journal of Sports Physiology and Performance, 15(4), 554–561. https://doi.org/10.1123/ijspp.2019-0058

Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., Yáñez‐García, J. M., Morales‐Alamo, D., Pérez‐Suárez, I., Calbet, J. A. L., & González‐Badillo, J. J. (2016). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678

Pousson, M., Amiridis, I. G., Cometti, G., & Van Hoecke, J. (1999). Velocity-specific training in elbow flexors. European Journal of Applied Physiology and Occupational Physiology, 80(4), 367–372. https://doi.org/10.1007/s004210050605

Richens, B., & Cleather, D. (2014). The Relationship Between the Number of Repetitions Performed at Given Intensities Is Different in Endurance and Strength Trained Athletes. Biology of Sport, 31(2), 157–161. https://doi.org/10.5604/20831862.1099047

Robertson, R. J., Gpss, F., Rutokowski, J., Lenz, B., Dixon, C., Timmer, J., Frazee, K., Dube, J., & Andreacci, J. (2003). Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Medicine & Science in Sports & Exercise, 35(2), 333–341. https://doi.org/10.1249/01.mss.0000048831.15016.2a

Rodríguez-Rosell, D., Yáñez-García, J. M., Torres-Torrelo, J., Mora-Custodio, R., Marques, M. C., & González-Badillo, J. J. (2018). Effort Index as a Novel Variable for Monitoring the Level of Effort During Resistance Exercises. Journal of Strength and Conditioning Research, 32(8), 2139–2153. https://doi.org/10.1519/jsc.0000000000002629

Sanchez-Medina, L., & Gonzalez-Badillo, J. J. (2011). Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Medicine & Science in Sports & Exercise, 43(9), 1725–1734. https://doi.org/10.1249/mss.0b013e318213f880

Sánchez-Medina, L., Pallarés, J., Pérez, C., Morán-Navarro, R., & González-Badillo, J. (2017). Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Medicine International Open, 01(02), E80–E88. https://doi.org/10.1055/s-0043-102933

Schoenfeld, B. J., Contreras, B., Krieger, J., Grigic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Medicine & Science in Sports & Exercise, 51(1), 94–103. https://doi.org/10.1249/mss.0000000000001764

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training Monitoring for Resistance Exercise: Theory and Applications. Sports Medicine, 46(5), 687–698. https://doi.org/10.1007/s40279-015-0454-0

Shimano, T., Kraemer, W. J., Spiering, B. A., Volek, J., Hatfield, D., Silvestre, R., Vingren, J. L., Fragala, M., Maresh, C., Fleck, S., Newton, R., Spreuwenberg, L., & Hakkinen, K. (2006). Elationship Between the Number of Repetitions and Selected Percentages of One Repetition Maximum in Free Weight Exercises in Trained and Untrained Men. Journal of Strength and Conditioning Research, 20(4), 819–823. https://doi.org/10.1519/00124278-200611000-00015

Suchomel, T. J., Nimphius, S., Bellon, C. R., Hornsby, W. G., & Stone, M. H. (2021). Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Medicine, 51(10), 2051–2066. https://doi.org/10.1007/s40279-021-01488-9

Thomas, K., Brownstein, C. G., Dent, J., Parker, P., Goodall, S., & Howatson, G. (2018). Neuromuscular Fatigue and Recovery after Heavy Resistance, Jump, and Sprint Training. Medicine & Science in Sports & Exercise, 50(12), 2526–2535. https://doi.org/10.1249/mss.0000000000001733

Weakley, J., Cowley, N., Schoenfeld, B. J., Read, D. B., Timmins, R. G., García-Ramos, A., & McGuckian, T. B. (2023). The Effect of Feedback on Resistance Training Performance and Adaptations: A Systematic Review and Meta-analysis. Sports Medicine, 53(9), 1789–1803. https://doi.org/10.1007/s40279-023-01877-2