Replication Study of the Effect of Different Loading Conditions on Running Mechanics at Different Velocities

Main Article Content

Taylor Coyle
Jennifer Murphy
https://orcid.org/0000-0001-8624-3828
Joe P. Warne
https://orcid.org/0000-0002-4359-8132

Abstract

The aim of this study was to replicate the study titled “Effect of different loading conditions on running mechanics at different velocities” by Carretero-Navarro et al., (2019) as part of a large replication project. The selected variable of interest was leg stiffness. Twenty-six recreationally active and healthy males (age: 23 ± 2 years, body mass: 80.20 ± 11.54kg, height: 177.96 ± 6.29cm) participated in two testing sessions, one week apart. Subjects completed an incremental maximal running test on a treadmill to determine their maximal aerobic speed (MAS). During the second session, participants completed nine, one-minute runs under different loading (+0%, +10%, and +20% of body mass using a weighted vest) and speed (60%, 80%, and 100% of their MAS) conditions. A two-way repeated measures ANOVA showed a significant main effect for speed on leg stiffness (F1.7, 38.6 = 5.94, p = 0.008, ηp2 = 0.205), similar to the original study (F2, 24 = 52.577, p < 0.001). However, the replication effect size estimate for speed on leg stiffness (ηp2 = 0.205) was significantly smaller than the original (ηp2 = 0.814) (z = 4.56, p < 0.001). The original effect size estimate for the main effect of speed was deemed incompatible with the replication estimate, therefore, the original study was not replicated fully. As there are growing demands for enhancing the quality of sports science research, one should focus on the accumulation of evidence for the effect of speed on leg stiffness to maximize athletic performance.

Metrics

Metrics Loading ...

Article Details

How to Cite
Coyle, T., Murphy, J., & Warne, J. P. (2025). Replication Study of the Effect of Different Loading Conditions on Running Mechanics at Different Velocities. Communications in Kinesiology, 1(6). https://doi.org/10.51224/cik.2024.65 (Original work published December 16, 2024)
Section
Metascience

References

Billat, L. V., & Koralsztein, J. P. (1996). Significance of the Velocity at &OV0312;O2max and Time to Exhaustion at this Velocity. Sports Medicine, 22(2), 90–108. https://doi.org/10.2165/00007256-199622020-00004

Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11-12), 1217–1227. https://doi.org/10.1016/0021-9290(89)90224-8

Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., Grange, J. A., Perugini, M., Spies, J. R., & van ’t Veer, A. (2014). The Replication Recipe: What makes for a convincing replication? Journal of Experimental Social Psychology, 50, 217–224. https://doi.org/10.1016/j.jesp.2013.10.005

Butler, R. J., Crowell, H. P., & Davis, I. M. (2003). Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18(6), 511–517. https://doi.org/10.1016/s0268-0033(03)00071-8

Büttner, F., Toomey, E., McClean, S., Roe, M., & Delahunt, E. (2020). Are questionable research practices facilitating new discoveries in sport and exercise medicine? The proportion of supported hypotheses is implausibly high. British Journal of Sports Medicine, 54(22), 1365–1371. https://doi.org/10.1136/bjsports-2019-101863

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/nrn3475

Caldwell, A. R. (2022). Exploring equivalence testing with the updated TOSTER r package. PsyArXiv. https://doi.org/10.31234/osf.io/ty8de

Caldwell, A. R., Vigotsky, A. D., Tenan, M. S., Radel, R., Mellor, D. T., Kreutzer, A., Lahart, I. M., Mills, J. P., Boisgontier, M. P., Boardley, I., Bouza, B., Cheval, B., Chow, Z. R., Contreras, B., Dieter, B., Halperin, I., Haun, C., Knudson, D., Lahti, J., … Consortium for Transparency in Exercise Science (COTES) Collaborators. (2020). Moving Sport and Exercise Science Forward: A Call for the Adoption of More Transparent Research Practices. Sports Medicine, 50(3), 449–459. https://doi.org/10.1007/s40279-019-01227-1

Carretero-Navarro, G., Márquez, G., Cherubini, D., & Taube, W. (2019). Effect of different loading conditions on running mechanics at different velocities. European Journal of Sport Science, 19(5), 595–602. https://doi.org/10.1080/17461391.2018.1537378

Cavagna, G. A., Franzetti, P., Heglund, N. C., & Willems, P. (1988). The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. The Journal of Physiology, 399(1), 81–92. https://doi.org/10.1113/jphysiol.1988.sp017069

Cavagna, G. A., Legramandi, M. A., & Peyré-Tartaruga, L. A. (2007). Old men running: mechanical work and elastic bounce. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 411–418. https://doi.org/10.1098/rspb.2007.1288

Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., & Etchells, P. J. (2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1(1), 4–17. https://doi.org/10.3934/neuroscience.2014.1.4

Coleman, D. R., Cannavan, D., Horne, S., & Blazevich, A. J. (2012). Leg stiffness in human running: Comparison of estimates derived from previously published models to direct kinematickinetic measures. Journal of Biomechanics, 45(11), 1987–1991. https://doi.org/10.1016/j.jbiomech.2012.05.010

Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Science, 349(6251). https://doi.org/10.1126/science.aac4716

Dalleau, G., Belli, A., Bourdin, M., & Lacour, J.-R. (1998). The spring-mass model and the energy cost of treadmill running. European Journal of Applied Physiology, 77(3), 257–263. https://doi.org/10.1007/s004210050330

Errington, T. M., Mathur, M., Soderberg, C. K., Denis, A., Perfito, N., Iorns, E., & Nosek, B. A. (2021). Investigating the replicability of preclinical cancer biology. eLife, 10. https://doi.org/10.7554/elife.71601

Farley, C. T., & González, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29(2), 181–186. https://doi.org/10.1016/0021-9290(95)00029-1

Ferris, D. P., Louie, M., & Farley, C. T. (1998). Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1400), 989–994. https://doi.org/10.1098/rspb.1998.0388

Günther, M., & Blickhan, R. (2002). Joint stiffness of the ankle and the knee in running. Journal of Biomechanics, 35(11), 1459–1474. https://doi.org/10.1016/s0021-9290(02)00183-5

Halperin, I., Vigotsky, A. D., Foster, C., & Pyne, D. B. (2018). Strengthening the Practice of Exercise and Sport-Science Research. International Journal of Sports Physiology and Performance, 13(2), 127–134. https://doi.org/10.1123/ijspp.2017-0322

He, J. P., Kram, R., & McMahon, T. A. (1991). Mechanics of running under simulated low gravity. Journal of Applied Physiology, 71(3), 863–870. https://doi.org/10.1152/jappl.1991.71.3.863

Heneghan, C., Perera, R., Nunan, D., Mahtani, K., & Gill, P. (2012). Forty years of sports performance research and little insight gained. BMJ, 345(e4797), e4797–e4797. https://doi.org/10.1136/bmj.e4797

Kim, S., & Park, S. (2011). Leg stiffness increases with speed to modulate gait frequency and propulsion energy. Journal of Biomechanics, 44(7), 1253–1258. https://doi.org/10.1016/j.jbiomech.2011.02.072

Kramer, A., Ritzmann, R., Gruber, M., & Gollhofer, A. (2012). Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions. Journal of Biomechanics, 45(10), 1816–1822. https://doi.org/10.1016/j.jbiomech.2012.04.014

Kuitunen, S., Komi, P. V., & Kyröläinen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine & Science in Sports & Exercise, 34(1), 166–173. https://doi.org/10.1097/00005768-200201000-00025

Kyröläinen, H., Belli, A., & Komi, P. V. (2001). Biomechanical factors affecting running economy. Medicine and Science in Sports and Exercise, 33(8), 1330–1337. https://doi.org/10.1097/00005768-200108000-00014

McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics, 23, 65–78. https://doi.org/10.1016/0021-9290(90)90042-2

McMahon, T. A., Valiant, G., & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology, 62(6), 2326–2337. https://doi.org/10.1152/jappl.1987.62.6.2326

Mesquida, C., Murphy, J., Lakens, D., & Warne, J. (2022). Replication concerns in sports and exercise science: a narrative review of selected methodological issues in the field. Royal Society Open Science, 9(12). https://doi.org/10.1098/rsos.220946

Morin, J.-B., Dalleau, G., Kyröläinen, H., Jeannin, T., & Belli, A. (2005). A simple method for measuring stiffness during running. Journal of Applied Biomechanics, 21(2), 167–180. https://doi.org/10.1123/jab.21.2.167

Murphy, J., Mesquida, C., Caldwell, A. R., Earp, B. D., & Warne, J. P. (2023). Proposal of a Selection Protocol for Replication of Studies in Sports and Exercise Science. Sports Medicine, 53(1), 281–291. https://doi.org/10.1007/s40279-022-01749-1

Nissen, S. B., Magidson, T., Gross, K., & Bergstrom, C. T. (2016). Publication bias and the canonization of false facts. eLife, 5. https://doi.org/10.7554/elife.21451

Nosek, B. A., & Errington, T. M. (2020). What is replication? PLOS Biology, 18(3), e3000691. https://doi.org/10.1371/journal.pbio.3000691

Pappas, P., Paradisis, G., Tsolakis, C., Smirniotou, A., & Morin, J.-B. (2014). Reliabilities of leg and vertical stiffness during treadmill running. Sports Biomechanics, 13(4), 391–399. https://doi.org/10.1080/14763141.2014.981853

Schmidt, S. (2009). Shall we Really do it Again? The Powerful Concept of Replication is Neglected in the Social Sciences. Review of General Psychology, 13(2), 90–100. https://doi.org/10.1037/a0015108

Silder, A., Besier, T., & Delp, S. L. (2015). Running with a load increases leg stiffness. Journal of Biomechanics, 48(6), 1003–1008. https://doi.org/10.1016/j.jbiomech.2015.01.051

Simons, D. J. (2014). The Value of Direct Replication. Perspectives on Psychological Science, 9(1), 76–80. https://doi.org/10.1177/1745691613514755

Struzik, A., Karamanidis, K., Lorimer, A., Keogh, J. W. L., & Gajewski, J. (2021). Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview. Applied Bionics and Biomechanics, 2021, 1–25. https://doi.org/10.1155/2021/9914278

Teunissen, L. P. J., Grabowski, A., & Kram, R. (2007). Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 210(24), 4418–4427. https://doi.org/10.1242/jeb.004481