Limited Effects of Age on the Use of the Ankle and Counter-Rotation Mechanism in the Sagittal Plane
Main Article Content
Abstract
During standing the center of mass (CoM) can be controlled relative to the base of support by applying ankle moments to shift the center of pressure (CoP mechanism). An additional mechanism is the counter-rotation mechanism, i.e., changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. In this study, we assessed anteroposterior balance performance and the related use of these postural control mechanisms in children, younger and older adults. Sixteen children (6-9y), 17 younger adults (18-24y) and eight older adults (65-80y) performed bipedal upright standing trials of 16 seconds on a rigid surface and on three balance boards that could freely move in the sagittal plane, varying in height (15-19 cm). Full body kinematics were measured. Performance related outcome measures, i.e., the number of trials with balance loss and the Root Mean Square of the time series of the CoM acceleration (due to the CoP and counter-rotation mechanism) and the contributions of the CoP and counter-rotation mechanism to the CoM acceleration (in %) were calculated. Furthermore, selected kinematic measures, i.e., the orientation of the board and head and the Mean Power Frequency of board orientation and of CoM acceleration were calculated. Compared to younger adults, children and older adults showed a poorer balance performance. Across age groups and conditions, the contribution of the CoP mechanism to the total CoM acceleration was dominant, i.e., 95%-108%. The contribution of the counter-rotation mechanism was limited, i.e., 19%-31% (with totals higher than 100% indicating opposite effects of both mechanisms), since the counter-rotation mechanism would conflict with stabilizing the head in space. Furthermore, children did use the counter-rotation mechanism relatively more to accelerate the CoM compared to younger adults as they are possibly still learning to limit the contribution of the counter-rotation mechanism.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited.
References
Alizadehsaravi, L., Bruijn, S. M., & van Dieën, J. H. (2021). Balance training improves feedback control of perturbed balance in older adults. bioRxiv, 2021.2003.2031.437824. doi:10.1101/2021.03.31.437824
Bergamin, M., Gobbo, S., Zanotto, T., Sieverdes, J. C., Alberton, C. L., Zaccaria, M., & Ermolao, A. (2014). Influence of age on postural sway during different dual-task conditions. Front Aging Neurosci, 6, 271. doi:10.3389/fnagi.2014.00271
Bruijn, S. M., Massaad, F., Maclellan, M. J., Van Gestel, L., Ivanenko, Y. P., & Duysens, J. (2013). Are effects of the symmetric and asymmetric tonic neck reflexes still visible in healthy adults? Neurosci Lett, 556, 89-92. doi:10.1016/j.neulet.2013.10.028
Bugnariu, N., & Fung, J. (2006). Aging and selective sensorimotor strategies in the regulation of upright balance. In 2006 International Workshop on Virtual Rehabilitation (pp. 187-+).
Demura, S., & Kitabayashi, T. (2006). Comparison of power spectrum characteristics of body sway during a static upright standing posture in healthy elderly people and young adults. Percept Mot Skills, 102(2), 467-476. doi:10.2466/pms.102.2.467-476
Dickin, D. C., McClain, M. A., Hubble, R. P., Doan, J. B., & Sessford, D. (2012). Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations. Hum Mov Sci, 31(5), 1238-1246. doi:10.1016/j.humov.2011.12.007
Gu, M. J., Schultz, A. B., Shepard, N. T., & Alexander, N. B. (1996). Postural control in young and elderly adults when stance is perturbed: dynamics. J Biomech, 29(3), 319-329. doi:10.1016/0021-9290(95)00052-6
Hirabayashi, S., & Iwasaki, Y. (1995). Developmental perspective of sensory organization on postural control. Brain Dev, 17(2), 111-113. doi:10.1016/0387-7604(95)00009-z
Hof, A. L. (2007). The equations of motion for a standing human reveal three mechanisms for balance. J Biomech, 40(2), 451-457. doi:10.1016/j.jbiomech.2005.12.016
Horak, F. B. (1987). Clinical measurement of postural control in adults. Phys Ther, 67(12), 1881-1885. doi:10.1093/ptj/67.12.1881
Horak, F. B., & Hlavacka, F. (2001). Somatosensory loss increases vestibulospinal sensitivity. Journal of Neurophysiology, 86(2), 575-585.
Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol, 55(6), 1369-1381. doi:10.1152/jn.1986.55.6.1369
Hsu, Y. S., Kuan, C. C., & Young, Y. H. (2009). Assessing the development of balance function in children using stabilometry. Int J Pediatr Otorhinolaryngol, 73(5), 737-740. doi:10.1016/j.ijporl.2009.01.016
Huang-Pollock, C. L., Carr, T. H., & Nigg, J. T. (2002). Development of selective attention: perceptual load influences early versus late attentional selection in children and adults. Dev Psychol, 38(3), 363-375.
Iles, J. F., & Pisini, J. V. (1992). Vestibular-evoked postural reactions in man and modulation of transmission in spinal reflex pathways. J Physiol, 455, 407-424. doi:10.1113/jphysiol.1992.sp019308
Khan, S., & Chang, R. (2013). Anatomy of the vestibular system: a review. NeuroRehabilitation, 32(3), 437-443. doi:10.3233/NRE-130866
Liaw, M. Y., Chen, C. L., Pei, Y. C., Leong, C. P., & Lau, Y. C. (2009). Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med J, 32(3), 297-304.
Lin, S. I., Woollacott, M. H., & Jensen, J. L. (2004). Postural response in older adults with different levels of functional balance capacity. Aging Clinical and Experimental Research, 16(5), 369-374.
MacLellan, M. J., & Patla, A. E. (2006). Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp Brain Res, 173(3), 521-530. doi:10.1007/s00221-006-0399-5
Manchester, D., Woollacott, M., Zederbauer-Hylton, N., & Marin, O. (1989). Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol, 44(4), M118-127. doi:10.1093/geronj/44.4.m118
Masani, K., Vette, A. H., Kouzaki, M., Kanehisa, H., Fukunaga, T., & Popovic, M. R. (2007). Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing. Neurosci Lett, 422(3), 202-206. doi:10.1016/j.neulet.2007.06.019
Nakamura, H., Tsuchida, T., & Mano, Y. (2001). The assessment of posture control in the elderly using the displacement of the center of pressure after forward platform translation. Journal of Electromyography and Kinesiology, 11(6), 395-403. doi:10.1016/S1050-6411(01)00016-5
Oba, N., Sasagawa, S., Yamamoto, A., & Nakazawa, K. (2015). Difference in Postural Control during Quiet Standing between Young Children and Adults: Assessment with Center of Mass Acceleration. PLoS One, 10(10), e0140235. doi:10.1371/journal.pone.0140235
Otten, E. (1999). Balancing on a narrow ridge: biomechanics and control. Philos Trans R Soc Lond B Biol Sci, 354(1385), 869-875. doi:10.1098/rstb.1999.0439
Parr, C., Routh, D. K., Byrd, M. T., & McMillan, J. (1974). A developmental study of the asymmetrical tonic neck reflex. Dev Med Child Neurol, 16(3), 329-335. doi:10.1111/j.1469-8749.1974.tb03343.x
Patel, M., Fransson, P. A., Lush, D., Petersen, H., Magnusson, M., Johansson, R., & Gomez, S. (2008). The effects of foam surface properties on standing body movement. Acta Oto-Laryngologica, 128(9), 952-960. doi:10.1080/00016480701827517
Peterka, R. J. (2002). Sensorimotor integration in human postural control. J Neurophysiol, 88(3), 1097-1118. doi:10.1152/jn.2002.88.3.1097
Riach, C., & Starkes, J. (1989). Visual Fixation and Postural Sway in Children. Journal of Motor Behavior, 21, 265-276. doi:10.1080/00222895.1989.10735481
Riemann, B. L., Myers, J. B., & Lephart, S. M. (2003). Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Arch Phys Med Rehabil, 84(1), 90-95. doi:10.1053/apmr.2003.50004
Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 6(4), 147-151. doi:10.1027/1614-2241/a000016
Shams, A., Vameghi, R., Shamsipour Dehkordi, P., Allafan, N., & Bayati, M. (2020). The development of postural control among children: Repeatability and normative data for computerized dynamic posturography system. Gait Posture, 78, 40-47. doi:10.1016/j.gaitpost.2020.03.002
Shumway-Cook, A., & Woollacott, M. H. (1985). The growth of stability: postural control from a development perspective. J Mot Behav, 17(2), 131-147. doi:10.1080/00222895.1985.10735341
Steindl, R., Kunz, K., Schrott-Fischer, A., & Scholtz, A. W. (2006). Effect of age and sex on maturation of sensory systems and balance control. Developmental Medicine and Child Neurology, 48(6), 477-482. doi:10.1017/S0012162206001022
Sturnieks, D. L., Arnold, R., & Lord, S. R. (2011). Validity and reliability of the Swaymeter device for measuring postural sway. BMC Geriatr, 11, 63. doi:10.1186/1471-2318-11-63
Sturnieks, D. L., St George, R., & Lord, S. R. (2008). Balance disorders in the elderly. Neurophysiol Clin, 38(6), 467-478. doi:10.1016/j.neucli.2008.09.001
Teasdale, N., Stelmach, G. E., Breunig, A., & Meeuwsen, H. J. (1991). Age differences in visual sensory integration. Exp Brain Res, 85(3), 691-696. doi:10.1007/BF00231755
Toledo, D. R., & Barela, J. A. (2010). Sensory and motor differences between young and older adults: somatosensory contribution to postural control. Rev Bras Fisioter, 14(3), 267-275.
van den Bogaart, M., Bruijn, S. M., Spildooren, J., van Dieën, J. H., & Meyns, P. (2022). Effects of age and surface instability on the control of the center of mass. Human Movement Science, 82, 102930. doi:https://doi.org/10.1016/j.humov.2022.102930
van den Bogaart, M., Bruijn, S. M., van Dieen, J. H., & Meyns, P. (2020). The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking. J Biomech, 103, 109660. doi:10.1016/j.jbiomech.2020.109660
van Dieen, J. H., van Leeuwen, M., & Faber, G. S. (2015). Learning to balance on one leg: motor strategy and sensory weighting. J Neurophysiol, 114(5), 2967-2982. doi:10.1152/jn.00434.2015
Wickens, C. D. (1974). Temporal limits of human information processing: A developmental study. Psychological Bulletin, 81(11), 739-755. doi:10.1037/h0037250
Winter, D. A., Patla, A. E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. J Neurophysiol, 80(3), 1211-1221. doi:10.1152/jn.1998.80.3.1211
Winter, D. A., Prince, F., Frank, J. S., Powell, C., & Zabjek, K. F. (1996). Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol, 75(6), 2334-2343. doi:10.1152/jn.1996.75.6.2334
Winter, D. A., Prince, F., & Stergiou, P. (1993). Medial-lateral and anterior-posterior motor responses associated with centre of pressure changes in quiet standing. Neuroscience Research Communications, 12, 141-148.
Yu, E., Abe, M., Masani, K., Kawashima, N., Eto, F., Haga, N., & Nakazawa, K. (2008). Evaluation of postural control in quiet standing using center of mass acceleration: comparison among the young, the elderly, and people with stroke. Arch Phys Med Rehabil, 89(6), 1133-1139. doi:10.1016/j.apmr.2007.10.047