Ketogenic and High-Carbohydrate Diets in Cyclists and Triathletes Performance Indicators and Methodological Considerations From a Pilot Study

Main Article Content

Andreas Kreutzer
https://orcid.org/0000-0002-1655-4599
Austin J. Graybeal
Petra P. Rack
Kamiah Moss
https://orcid.org/0000-0002-8545-6343
Garrett R. Augsburger
https://orcid.org/0000-0003-3579-1570
Jada L. Willis
Robyn Braun-Trocchio
https://orcid.org/0000-0002-7075-7346
Meena Shah
https://orcid.org/0000-0001-9193-1342

Abstract

Endurance athletes frequently employ nutritional strategies to enhance performance. While professional organizations recommend high carbohydrate (HC) diets to maximize performance, many athletes, and researchers have recently shown renewed interest in the ketogenic diet (KD) in hopes to promote “fat adaptation”, which would allow athletes to make use of the essentially unlimited energy resources from stored body fat. This would circumvent one fatigue mechanism, the depletion of muscle glycogen stores, that has been considered central to performance outcomes in endurance events. The present study investigated the effects of participants’ habitual diet (HD), HC, and KD on endurance performance in a 30-km simulated cycling time trial (TT), physiological responses during the TT, and muscle session fuel percentile (SFP) before and after the TT using ultrasonic imaging. Due to the COVID-19 pandemic, data collection ceased after only six recreational cyclists and triathletes (f = 4, m = 6; age: 37.2 ± 12.2; VO2max: 46.8 ± 6.8 ml/kg/min; weekly cycling distance: 225.3 ± 64.2 km). Due to the small sample size, we do not report inferential statistics for our primary outcome measure, cycling performance. Participants completed the KD at the lowest power output. Oxygen consumption (V̇O2), heart rate (HR), and perceived exertion (RPE) during the TT were similar in all conditions. FATox rates were highest in the KD condition and lowest in the HC condition. SFP was lower during KD compared with HD and lower following the TT compared with fasted resting values across all conditions. We discuss methodological considerations into the use of exercise equipment, nutritional interventions, and statistical analysis strategies for study designs like the present. Further research is needed to assess the impact of HC and KD on TT performance in this population.


 


ClinicalTrials.gov Identifier: NCT04097171; OSF preregistration: https://osf.io/ujx6e/

Metrics

Metrics Loading ...

Article Details

How to Cite
Kreutzer, A., Graybeal, A., Rack, P., Moss, K., Augsburger, G., Willis, J. L., … Shah, M. (2022). Ketogenic and High-Carbohydrate Diets in Cyclists and Triathletes: Performance Indicators and Methodological Considerations From a Pilot Study. Communications in Kinesiology, 1(4). https://doi.org/10.51224/cik.2022.42 (Original work published August 8, 2022)
Section
Physiology and Nutrition

References

Basset, F. A., & Boulay, M. R. (2000). Specificity of Treadmill and Cycle Ergometer Tests in Triathletes, Runners and Cyclists. European Journal of Applied Physiology, 81, 214–221. https://doi.org/10.1007/s004210050033

Bates, D., Maechler, M., Bolker, B., Walker, S., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., Green, P., & Fox, J. (2019). https://CRAN.R-project.org/package=lme4

Bergström, J., & Hultman, E. (1967). A Study of the Glycogen Metabolism During Exercise in Man. Scandinavian Journal of Clinical and Laboratory Investigation, 19, 218–228. https://doi.org/10.3109/00365516709090629

Boisgontier, M. P., & Cheval, B. (2016). The ANOVA to Mixed Model Transition. Neuroscience & Biobehavioral Reviews, 68, 1004–1005. https://doi.org/f83jzs

Bone, J. L., Ross, M. L., Tomcik, K. A., Jeacocke, N. A., McKay, A. K. A., & Burke, L. M. (2021). The Validity of Ultrasound Technology in Providing an Indirect Estimate of Muscle Glycogen Concentrations Is Equivocal. Nutrients, 13, 2371. https://doi.org/gmmtcg

Brehm, B. J., Seeley, R. J., Daniels, D. ’Alessio., SR, & D.A. (2003). A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 88, 1617–1623. https://doi.org/10.1210/jc.2002-021480

Brehm, B. J., Spang, S. E., Lattin, B. L., Seeley, R. J., Daniels, D. ’Alessio., SR, & D.A. (2005). The Role of Energy Expenditure in the Differential Weight Loss in Obese Women on Low-Fat and Low-Carbohydrate Diets. Journal of Clinical Endocrinology and Metabolism, 90, 1475–1482. https://doi.org/10.1210/jc.2004-1540.

Burke, L. M. (2017). Low Carb High Fat (LCHF) Diets for Athletes – Third Time Lucky? Journal of Science and Medicine in Sport, 20 Suppl 1: S1. https://doi.org/ghp7b8

Burke, L. M., Angus, D. J., Cox, G. R., Cummings, N. K., Febbraio, M. A., Gawthorn, K., Hawley, J. A., Minehan, M., Martin, D. T., & Hargreaves, M. (1985). Effect of Fat Adaptation and Carbohydrate Restoration on Metabolism and Performance During Prolonged Cycling. Journal of Applied Physiology, 89, 2413–2421. https://doi.org/10.1152/jappl.2000.89.6.2413.

Burke, L. M., Castell, L. M., Casa, D. J., Close, G. L., Costa, R. J. S., Desbrow, B., Halson, S. L., Lis, D. M., Melin, A. K., Peeling, P., Saunders, P. U., Slater, G. J., Sygo, J., Witard, O. C., Bermon, S., & Stellingwerff, T. (2019). International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. International Journal of Sport Nutrition and Exercise Metabolism, 29, 73–84. https://doi.org/gjbrp2

Burke, L. M., & Hawley, J. A. (2002). Effects of Short-Term Fat Adaptation on Metabolism and Performance of Prolonged Exercise. Medicine & Science in Sports & Exercise, 34, 1492–1498. https://doi.org/10.1097/00005768-200209000-00015

Burke, L. M., Ross, M. L., Garvican‐Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., Mirtschin, J. G., Cato, L. E., Strobel, N., Sharma, A. P., & Hawley, J. A. (2017). Low Carbohydrate, High Fat Diet Impairs Exercise Economy and Negates the Performance Benefit From Intensified Training in Elite Race Walkers. Journal of Physiology, 595, 2785–2807. https://doi.org/10.1113/JP273230.

Burke, L. M., Sharma, A. P., Heikura, I. A., Forbes, S. F., Holloway, M., McKay, A. K. A., Bone, J. L., Leckey, J. J., Welvaert, M., & Ross, M. L. (2020). Crisis of Confidence Averted: Impairment of Exercise Economy and Performance in Elite Race Walkers by Ketogenic Low Carbohydrate, High Fat (LCHF) Diet Is Reproducible. PLoS One, 15, 0234027. https://doi.org/gg23h5

Burke, L. M., Whitfield, J., Heikura, I. A., Ross, M. L. R., Tee, N., Forbes, S. F., Hall, R., McKay, A. K. A., Wallett, A. M., & Sharma, A. P. (2021). Adaptation to a Low Carbohydrate High Fat Diet Is Rapid but Impairs Endurance Exercise Metabolism and Performance Despite Enhanced Glycogen Availability. Journal of Physiology, 599, 771–790. https://doi.org/ghvh2b

Buuren S, & K, G.-O. (2011). MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45, 1–67. https://doi.org/10.18637/jss.v045.i03

Carey, A. L., Staudacher, H. M., Cummings, N. K., Stepto, N. K., Nikolopoulos, V., Burke, L. M., & Hawley, J. A. (1985). Effects of Fat Adaptation and Carbohydrate Restoration on Prolonged Endurance Exercise. Journal of Applied Physiology, 91, 115–122. https://doi.org/10.1152/jappl.2001.91.1.115

DeBruine, L., Krystalli, A., & faux, H. A. (2021). Simulation for Factorial Designs [[Online].]. https://CRAN.R-project.org/package=faux

Decroix, L., Pauw, K., Foster, C., & Meeusen, R. (2016). Guidelines to Classify Female Subject Groups in Sport-Science Research. International Journal of Sports Physiology and Performance, 11, 204–213. https://doi.org/ggcfjx

Durkalec-Michalski, K., Nowaczyk, P. M., & Siedzik, K. (2019). Effect of a Four-Week Ketogenic Diet on Exercise Metabolism in Crossfit-Trained Athletes. Journal of the International Society of Sports Nutrition, 16, 16. https://doi.org/10.1186/s12970-019-0284-9

Feinman, R. D., Pogozelski, W. K., Astrup, A., Bernstein, R. K., Fine, E. J., Westman, E. C., Accurso, A., Frassetto, L., Gower, B. A., McFarlane, S. I., Nielsen, J. V., Krarup, T., Saslow, L., Roth, K. S., Vernon, M. C., Volek, J. S., Wilshire, G. B., Dahlqvist, A., Sundberg, R., … Worm, N. (2015). Dietary Carbohydrate Restriction As the First Approach in Diabetes Management: Critical review and evidence base. Nutrition, 31, 1–13. https://doi.org/10.1016/j.nut.2014.06.011

Galbo, H., Holst, J. J., & Christensen, N. J. (1979). The Effect of Different Diets and of Insulin on the Hormonal Response to Prolonged Exercise. Acta Physiologica, 107, 19–32,. https://doi.org/10.1111/j.1748-1716.1979.tb06438.x.

Goedecke, J. H., Christie, C., Wilson, G., Dennis, S. C., Noakes, T. D., Hopkins, W. G., & Lambert, E. V. (1999). Metabolic Adaptations to a High-Fat Diet in Endurance Cyclists. Metabolism: Clinical and Experimental, 48, 1509–1517. https://doi.org/10.1016/s0026-0495(99)90238-x

Graybeal, A. J., Kreutzer, A., Rack, P., Moss, K., Augsburger, G., Willis, J. L., Braun-Trocchio, R., & Shah, M. (2021). Perceptions of Appetite Do Not Match Hormonal Measures of Appetite in Trained Competitive Cyclists and Triathletes Following a Ketogenic Diet Compared to a High-Carbohydrate or Habitual Diet: A Randomized Crossover Trial. Nutrition Research, 93, 111–123. https://doi.org/gmmtch

Gribble, S. (2021). An Interactive Model-Based Calculator of Cycling Power vs. https://www.gribble.org/cycling/power_v_speed.html

Hall, K. D., Guo, J., Courville, A. B., Boring, J., Brychta, R., Chen, K. Y., Darcey, V., Forde, C. G., Gharib, A. M., Gallagher, I., Howard, R., Joseph, P. V., Milley, L., Ouwerkerk, R., Raisinger, K., Rozga, I., Schick, A., Stagliano, M., Torres, S., … Chung, S. T. (2021). Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature Medicine, 27, 344–353. https://doi.org/10.1038/s41591-020-01209-1.

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A Brief Introduction to Mixed Effects Modelling and Multi-Model Inference in Ecology. PeerJ, 6, 4794. https://doi.org/gdh936

Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology, 79–83. https://doi.org/10.1007/BF01466278

Heidel, R. E. (2016). Causality in Statistical Power: Isomorphic Properties of Measurement, Research Design, Effect Size, and Sample Size. Scientifica (Cairo, 8920418. https://doi.org/gk8w8p

Hiilloskorpi, H. K., Pasanen, M. E., Fogelholm, M. G., Laukkanen, R. M., & Mänttäri, A. T. (2003). Use of Heart Rate to Predict Energy Expenditure From Low to High Activity Levels. International Journal of Sports Medicine, 24, 332–336. https://doi.org/fbbg7z

Hill, J. C., & San Millán, I. (2014). Validation of Musculoskeletal Ultrasound to Assess and Quantify Muscle Glycogen Content. The Physician and Sportsmedicine, 42, 45–52. https://doi.org/10.3810/psm.2014.09.2075

Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of Power in Physical Performance Tests. Sports Medicine, 31, 211–234. https://doi.org/c2mfh9

Impey, S. G., Hammond, K. M., Shepherd, S. O., Sharples, A. P., Stewart, C., Limb, M., Smith, K., Philp, A., Jeromson, S., Hamilton, D. L., Close, G. L., & Morton, J. P. (2016). Fuel for the Work Required: A Practical Approach to Amalgamating Train-Low Paradigms for Endurance Athletes. Physiological Reports, 4, 12803. https://doi.org/10.14814/phy2.12803.

Impey, S. G., Hearris, M. A., Hammond, K. M., Bartlett, J. D., Louis, J., Close, G. L., & Morton, J. P. (2018). Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Medicine, 48, 1031–1048. https://doi.org/gdwk98

Jeukendrup, A. E. (2004). Carbohydrate Intake During Exercise and Performance. Nutrition, 20, 669–677. https://doi.org/bnpn7g

Jeukendrup, A. E. (2011). Nutrition for Endurance Sports: Marathon, Triathlon, and Road Cycling. Journal of Sports Science, 29 Suppl 1, 91–99. https://doi.org/b52hvj

Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2020). Physiology of Sport and Exercise (7th ed.). Human Kinetics.

Kerksick, C. M., Arent, S., Schoenfeld, B. J., Stout, J. R., Campbell, B., Wilborn, C. D., Taylor, L., Kalman, D., Smith-Ryan, A. E., Kreider, R. B., Willoughby, D., Arciero, P. J., VanDusseldorp, T. A., Ormsbee, M. J., Wildman, R., Greenwood, M., Ziegenfuss, T. N., Aragon, A. A., & Antonio, J. (2017). International society of sports nutrition position stand: nutrient timing. Journal of the International Society of Sports Nutrition, 14. https://doi.org/10.1186/s12970-017-0189-4

Lakens, D., & Caldwell, A. R. (2021). Simulation-Based Power Analysis for Factorial Analysis of Variance Designs. AMPPS, 4, 2515245920951503. https://doi.org/gj2hw8

Lambert, E. V., Hawley, J. A., Goedecke, J., Noakes, T. D., & Dennis, S. C. (1997). Nutritional Strategies for Promoting Fat Utilization and Delaying the Onset of Fatigue During Prolonged Exercise. Journal of Sports Science, 15, 315–324. https://doi.org/10.1080/026404197367326.

Lambert, E. V., Speechly, D. P., Dennis, S. C., & Noakes, T. D. (1994). Enhanced Endurance in Trained Cyclists During Moderate Intensity Exercise Following 2 Weeks Adaptation to a High Fat Diet. European Journal of Applied Physiology, 69, 287–293. https://doi.org/10.1007/bf00392032

Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2019). https://CRAN.R-project.org/package=emmeans

McSwiney, F. T., Doyle, L., Plews, D. J., & Zinn, C. (2019). Impact Of Ketogenic Diet On Athletes: Current Insights. Open Access Journal of Sports Medicine, 10, 171–183. https://doi.org/ggp3jm

McSwiney, F. T., Wardrop, B., Hyde, P. N., Lafountain, R. A., Volek, J. S., & Doyle, L. (2018). Keto-Adaptation Enhances Exercise Performance and Body Composition Responses to Training in Endurance Athletes. Metabolism, 81, 25–34. https://doi.org/10.1016/j.metabol.2017.10.010

Misra, S., & Oliver, N. S. (2015). Utility of Ketone Measurement in the Prevention, Diagnosis and Management of Diabetic Ketoacidosis. Diabetic Medicine, 32, 14–23. https://doi.org/10.1111/dme.12604

Nieman, D. C., Shanely, R. A., Zwetsloot, K. A., Meaney, M. P., & Farris, G. E. (2015). Ultrasonic Assessment of Exercise-Induced Change in Skeletal Muscle Glycogen Content. BMC Sports Science, Medicine, and Rehabilitation, 7, 9. https://doi.org/gb3pw8

Pauw K, B, R., SS, C., Geus B, G, R., & R, M. (2013). Guidelines to Classify Subject Groups in Sport-Science Research. International Journal of Sports Physiology and Performance, 8, 111–122. https://doi.org/f4nt76

Péronnet, F., & Massicotte, D. (1991). Table of Nonprotein Respiratory Quotient: An Update. Canadian Journal of Sport Science, 16, 23–29.

Phinney, S. D., Bistrian, B. R., Evans, W. J., Gervino, E., & Blackburn, G. L. (1983). The Human Metabolic Response to Chronic Ketosis Without Caloric Restriction: Preservation of Submaximal Exercise Capability With Reduced Carbohydrate Oxidation. Metabolism: Clinical and Experimental, 32, 769–776. https://doi.org/10.1016/0026-0495(83)90106-3.

Pitsiladis, Y. P., & Maughan, R. J. (1999). The Effects of Exercise and Diet Manipulation on the Capacity to Perform Prolonged Exercise in the Heat and in the Cold in Trained Humans. Journal of Physiology, 517, 919–930,. https://doi.org/10.1111/j.1469-7793.1999.0919s.x.

Poole, D. C., & Jones, A. M. (2017). Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. Journal of Applied Physiology, 997–1002.

Prins, P. J., Noakes, T. D., Welton, G. L., Haley, S. J., Esbenshade, N. J., Atwell, A. D., Scott, K. E., Abraham, J., Raabe, A. S., Buxton, J. D., & Ault, D. L. (2019). High Rates of Fat Oxidation Induced by a Low-Carbohydrate, High-Fat Diet, Do Not Impair 5-km Running Performance in Competitive Recreational Athletes. Journal of Sports Science and Medicine, 18, 738–750. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873122/

Quinn, T. J., & Coons, B. A. (2011). The Talk Test and Its Relationship With the Ventilatory and Lactate Thresholds. Journal of Sports Science, 29, 1175–1182. https://doi.org/bgs275

R version 4.1.1. (2021). R Foundation for Statistical Computing. https://www.R-project.org/.

Routledge, H. E., Bradley, W. J., Shepherd, S. O., Cocks, M., Erskine, R. M., Close, G. L., & Morton, J. P. (2019). Ultrasound Does Not Detect Acute Changes in Glycogen in Vastus Lateralis of Man. Medicine & Science in Sports & Exercise, 51, 2286–2293. https://doi.org/gmmtcf

rstatix, K. A. (2021). Pipe-Friendly Framework for Basic Statistical Tests [[Online].]. https://CRAN.R-project.org/package=rstatix

Sampson, G., Pugh, J. N., Morton, J. P., & Areta, J. L. (2021). Carbohydrate for Endurance Athletes in Competition Questionnaire (CEAC-Q): Validation of a Practical and Time-Efficient Tool for Knowledge Assessment. Sport Sci Health, 17. https://doi.org/gmq2rx

Schafer, J. L., & Yucel, R. M. (2012). Computational Strategies for Multivariate Linear Mixed-Effects Models With Missing Values. Journal of Computational and Graphical Statistics, 11, 437–457. https://doi.org/b4r25x

Senn, S. (2006). Change From Baseline and Analysis of Covariance Revisited. Statistics in Medicine, 25, 4334–4344. https://doi.org/fdmg6x

Shan, Z., Rehm, C. D., Rogers, G., Ruan, M., Wang, D. D., Hu, F. B., Mozaffarian, D., Zhang, F. F., & Bhupathiraju, S. N. (2019). Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999-2016. JAMA, 322, 1178–1187. https://doi.org/ggdhbs

Shaw, D. M., Merien, F., Braakhuis, A., Maunder, E. D., & Dulson, D. K. (2019). Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Medicine & Science in Sports & Exercise, 51, 2135–2146. https://doi.org/10.1249/MSS.0000000000002008.

Shilpa, J., & Mohan, V. (2018). Ketogenic diets: Boon or bane? Indian Journal of Medical Research, 148, 251–253. https://doi.org/10.4103/ijmr.IJMR_1666_18.

Snow, G. (n.d.). blockrand: Randomization for Block Random Clinical Trials. https://CRAN.R-project.org/package=blockrand

Sparks, A. S., Williams, E. L., Jones, H. J., Bridge, C. A., Marchant, D., & McNaughton, L. (2016). Test-Retest Reliability of a 16.1 km Time Trial in Trained Cyclists Using the CompuTrainer Ergometer. Journal of Science and Cycling, 5, 35–41. https://doi.org/10.28985/jsc.v5i3.272.

Sports Medicine, A. C. (2018). ACSM’s Guidelines for Exercise Testing and Prescription (10th ed.). Wolters Kluwer Health.

Stepto, N. K., Carey, A. L., Staudacher, H. M., Cummings, N. K., Burke, L. M., & Hawley, J. A. (2002). Effect of Short-Term Fat Adaptation on High-Intensity Training. Medicine & Science in Sports & Exercise, 34, 449–455. https://doi.org/10.1097/00005768-200203000-00011

The MuscleHealth Company. Position Stand. Science and Application. (2018).

Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). American College of Sports Medicine Joint Position Statement. Medicine & Science in Sports & Exercise, 48, 543–568. https://doi.org/10.1249/MSS.0000000000000852

Volek, J. S., Freidenreich, D. J., Saenz, C., Kunces, L. J., Creighton, B. C., Bartley, J. M., Davitt, P. M., Munoz, C. X., Anderson, J. M., Maresh, C. M., Lee, E. C., Schuenke, M. D., Aerni, G., Kraemer, W. J., & Phinney, S. D. (2016). Metabolic Characteristics of Keto-Adapted Ultra-Endurance Runners. Metabolism, 65, 100–110. https://doi.org/10.1016/j.metabol.2015.10.028

Worme, J. D., Doubt, T. J., Singh, A., Ryan, C. J., Moses, F. M., & Deuster, P. A. (1990). Dietary Patterns, Gastrointestinal Complaints, and Nutrition Knowledge of Recreational Triathletes. Am J Clin Nutr, 51, 690–697. https://doi.org/10.1093/ajcn/51.4.690.

Yancy, W. S., Olsen, M. K., Guyton, B., JR, & RP, W. E. C. A. L.-C. (2004). Ketogenic Diet Versus a Low-Fat Diet to Treat Obesity and Hyperlipidemia. Ann Intern Med, 140, 769–777. https://doi.org/gf9nd

Zinn, C., Wood, M., Williden, M., Chatterton, S., & Maunder, E. (2017). Ketogenic Diet Benefits Body Composition and Well-Being but Not Performance in a Pilot Case Study of New Zealand Endurance Athletes. Journal of the International Society of Sports Nutrition, 14. https://doi.org/10.1186/s12970-017-0180-0.