Investigating Optimal Noise Level for Imperceptible Vibrotactile Stimulation during a Force Stability Task

Main Article Content

Courtney A. Haynes
Matthew S. Tenan
Antony D. Passaro
Andrew J. Tweedell
https://orcid.org/0000-0002-8182-7768

Abstract

Imperceptible vibratory noise stimulation has shown to improve stability for both whole body postural control and simple motor control tasks.  Noise stimulation is theorized to elicit a stochastic resonance-like effect within the somatosensory system, but there is disagreement in the literature regarding an optimal stimulation level for motor stability in humans.  To explore vibrotactile stimulation, eighteen (18) participants performed an isometric finger flexion task with visual feedback while receiving noise stimulation scaled to varying percentages of their sub-sensory threshold level.  Performance was quantified as the root-mean-square (RMS) error between the target force and the actual generated force values.  The goals of the study were to determine: 1) whether force stability is significantly better when receiving their custom “principal” stimulation compared to other sub-sensory stimulation levels, and 2) if an individual’s principal stimulation level may be predicted by either their maximal voluntary contraction (MVC) or sub-sensory threshold level.  A main effect of noise stimulation was observed (p < .001) indicating significantly better performance (lower RMS error) during the force stability task when individualized principal noise stimulation was applied.  At the group level, task performance was significantly improved with principal noise stimulation compared to other stimulation levels (p ≤ .019).  At the individual level, however, performance at the principal stimulation level was only significantly different than the distribution of errors for other stimulation levels for two individuals.  Moderate to strong Spearman correlations (rs = .56 and r= .65, respectively) suggest principal stimulation level increases with MVC and sub-sensory threshold. 

Metrics

Metrics Loading ...

Article Details

How to Cite
Haynes, C., Tenan, M., Passaro, A., & Tweedell, A. (2023). Investigating Optimal Noise Level for Imperceptible Vibrotactile Stimulation during a Force Stability Task. Communications in Kinesiology, 1(4). https://doi.org/10.51224/cik.2022.41 (Original work published December 16, 2022)
Section
Sensorimotor Control
Author Biography

Courtney A. Haynes, U.S. Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Courtney A. Haynes received her Ph.D. in Biomedical Engineering from Virginia Tech in 2013.  She is currently employed as a biomedical engineer with the DEVCOM U.S. Army Research Laboratory (ARL).  Her work with ARL has included the evaluation of exoskeleton and Soldier augmentation systems, physical performance and marksmanship assessment, and basic science efforts to understand the mechanisms of human adaptation to physical systems. 

References

Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. J Phys A: Math Gen 14(11), L453-L457.

Bezrukov, S. M. & Vodyanoy, I. (1995) Noise-induced enhancement of signal transduction across voltage dependent ion channels. Nature 378, 362-364.

Collins, J. J., Priplata A. A., Gravelle, D. C., Niemi, J., Harry, J., & Lipsitz LA. (2003) Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Mar/Apr, 76-83.

Cort, J. A. & Potvin, J. R. (2011) Maximum isometric finger pull forces. Int J Ind Ergon 41(2), 91-95.

Dunnett, C. W. (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50(272), 1096-1121.

Galica, A. M., Kang, H. G., Priplata, A. A., D’Andrea, S. E., Starobinets, O. V., Sorond, F. A., Cupples, L. A., & Lipsitz, L. A. (2009) Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait & Post 30, 383-387.

Gammaitoni, L., Hanggi, P., Jung, P., & Marchesoni, F. (1998) Stochastic resonance. Rev Mod Phys 70(1), 2233-287.

Goel, R., Kofman, I., Jeevarajan, J., De Dios, Y., Cohen, H., Bloomberg, J. J., & Mulavara, A. P. (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE 10(8), e0136335. Doi:10.1371/journal.pone.0136335.

Hur, P., Wan, Y-H., Seo, N. J. (2014) Investigating the role of vibrotactile noise in response to perturbation. IEEE Trans Biomed Eng 61(6): 1628-1633.

Lakshminarayanan, K., Lauer, A. W., Ramakrishnan, V., Webster, J. G., & Seo, N. J. (2015) Application of vibration to wrist and hand skin affects fingertip tactile sensation. Physiol Reports 3(7): e12465.

Lipsitz, L. A., Lough, M., Niemi, J., Travison, T., Howlett, H., & Manor, B. (2015) A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch Phys Med Rehabil 96(3), 432-439.

Magalhaes, F. H. & Kohn, A. F. (2011) Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp Brain Res 209, 139-151.

Manjarrez, E., Diez-Martinez, O., Mendez, I., & Flores, A. (2002) Stochastic resonance in human electroencephalographic activity elicited by mechanical tactile stimuli. Neurosci Lett 324, 213-216.

Mendez-Balbuena, I., Manjarrez, E., Schulte-Monting, J., Huethe, F., Tapia, J. A., Hepp-Raymond, M-C., & Kristeva, R. (2012) Improved sensorimotor performance via stochastic resonance. J Neurosci 32(36), 12612-12618.

McDonnell, M. D. & Abbott, D. (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLOS Comput Biol 5(5), 1-6.

Moss, F. & Milton, J. G. (2003) Balancing the unbalanced. Nature 425, 911-912.

Moss, F., Ward, L. M., & Sannita, W. G. (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115, 267-281.

Mulavara, A. P., Kofman, I. S., De Dios, Y. E., Miller, C, Peters, B. T., Goel, R., Galvan-Garza, R., & Bloomberg, J. J. (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9,117.

Peng, Y-L., Tenan, M. S., Griffin, L. (2018) Hip position and sex differences in motor unit firing patterns of the vastus medialis and vastus medialis oblique in healthy individuals. J Appl Physiol 124, 1438-1446.

Priplata, A. A., Niemi, J., Salen, M., Harry, J., Lipsitz, L. A., & Collins, J. J. (2002) Noise-enhanced human balance control. Phys Rev Lett 89(23), 238101-1–238101-4.

Priplata, A. A., Patritti, B. L., Niemi, J. B., Hughes, R., Gravelle, D. C., Lipsitz, L. A., Veves, A., Stein, J., Bonato, P., & Collins, J. J. (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59, 4-12.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Mechanoreceptors Specialized to Receive Tactile Information. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10895/

Severini, G. & Delahunt, E. (2018) Effect of noise stimulation below and above sensory threshold on postural sway during a mildly challenging balance task. Gait & Post 63, 27-32.

Simeonov, P., Hsiao, H., Powers, J., Ammons, D., Kau, T., & Amendola, A. (2011) Postural stability effects of random vibration at the feet of construction workers in simulated elevation. Appl Ergo 42, 672-681.

Tenan, M. S., Hackney, A. C., & Griffin, L. (2016) Maximal force and tremor changes across the menstrual cycle. Eur J Appl Physiol 116, 153-160.

Tenan, M. S., Tweedell, A. J., Haynes, C. A., & Passaro, A. D. (2019) The effect of imperceptible Gaussian tendon vibration on the Hoffmann reflex. Neurosci Lett 706, 123-127.

Trenado, C., Mikulic, A., Manjarrez, E., Mendez-Balbuena, I., Schulte-Monting, J., Huethe, F., Hepp-Raymond, M-C., & Kristeva, R. (2014) Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant. Front Hum Neurosci 8(22), 1-9.