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Abstract 

 Mixed-effect models are flexible tools for researchers in a myriad of fields, but that flexibility 

comes at the cost of complexity and if users are not careful in how their model is specified, they could be 

making faulty inferences from their data. We argue that there is significant confusion around appropriate 

random effects to be included in a model given the study design, with researchers generally being better at 

specifying the fixed effects of a model, which map onto to their research hypotheses. To that end, we 

present an instructive framework for evaluating the random effects of a model in three different 

situations: (1) longitudinal designs; (2) factorial repeated measures; and (3) when dealing with multiple 

sources of variance. We provide worked examples with open-access code and data in an online 

repository. We think this framework will be helpful for students and researchers who are new to mixed 

effect models, and to reviewers who may have to evaluate a novel model as part of their review.  

 

Keywords: mixed-effects regression, random effects, longitudinal data, repeated measures 
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Mixed-effect models (1–3) are an increasingly popular analytical method in a wide range of 

disciplines. As a crude illustration of its popularity, we conducted a literature search in PubMed to 

identify articles that reported using an Analysis of Variance (ANOVA) versus mixed-effect models. 

While ANOVA was by the far the dominantly used term, various references to mixed-effect models 

(sometimes also called mixed-effects regression, mixed models, or multi-level models(4,5)) have been 

closing the gap. This increase in the use of mixed-effect models is multi-causal, but broadly we think that 

researchers are attracted to mixed-effect models for their flexibility: mixed-effect models can deal with 

missing data more easily; mixed-effect models highlight individual differences in the estimation of 

variance components; for longitudinal designs, mixed-effect models explicitly model individual 

trajectories and variability in time itself; and mixed-effect models allow for more than one source of 

variability to be estimated simultaneously(6–9). The mixed-effect model also extends to other statistical 

applications such as meta-analysis(10), measurement (11), and mediation models (12,13). Finally, as with 

general linear models, mixed-effect models can be extended to handle categorical outcome measures.(14) 

 

Figure 1. Frequency of hits on PubMed searched 2021-11-15 for “ANOVA”, “mixed-effect/s” (or 

“mixed effect/s”) and “repeated measures+ANOVA” (or “RM” + “ANOVA”). 

 

The tremendous power of mixed models comes at the cost of analytical complexity. Despite excellent 

resources on the topic (5,8,9), researchers are often faced with difficult choices and sometimes conflicting 

recommendations (15,16), and may not have the time or statistical expertise necessary to understand these 
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resources (17), as many references are quite mathematically dense. Although there are domain-specific 

guides that are written to address particular types of research designs and use examples familiar to 

subject-matter experts in that domain (e.g., 18,19), confusion surrounds this complicated topic.  

Our own personal experience, which includes a non-random sample of dissertation committees, 

manuscript reviews, and questions at workshops on mixed-effect models, shows that a major part of this 

confusion is in choosing the appropriate random effects for a model, with models often being mis-

specified. Researchers generally appear better at selecting and interpreting appropriate fixed effects to test 

their hypotheses. These fixed effects correspond most often to the hypotheses that guided the research. 

However, the inferences about fixed effects depend on the random effects of the model.  

Inappropriate specification of random effects has substantial negative consequences on the credibility 

of the statistical inference.(20) For instance, including only a random effect of participant in a study with 

multiple within-subject factors can make it seem like the researchers have more independent data than 

they have, spuriously shrinking the standard error and increasing the Type I error rate (an example of 

under-specification). Conversely, including fully crossed random effects of participants and stimuli in an 

experiment where there is only one observation per person for each stimulus can leave no residual error, 

creating a non-identifiable matrix (an example of over-specification; (21)). Or the researchers may simply 

omit a random-effect that is justified either by the design or the empirical variability in the data (an 

example of mis-specification). Thus, reasonable specification of random effects is critical to making 

reasonable inferences about the fixed effects.    

  Our primary contention is that there is confusion among researchers about how to correctly 

specify mixed-effect models (as others have argued (20,22–24)). Our goal is thus to provide a technically 

sound but accessible and didactic paper to help researchers choose appropriate random effects as a 

starting point based on their study design. Our target audience is busy researchers who are not experts: 

such as, novices who are starting out with mixed-effect models, researchers who are familiar with the 

Acc
ep

ted
: In

-P
res

s



5 
 

basic concept but unsure how to properly specify a model in a more complicated design, and reviewers 

tasked with evaluating a novel model during peer-review.  

We will not be able to move someone from novice to expert with the concepts presented in this 

manuscript, but we can help researchers avoid some fundamental errors and prepare them to tackle more 

detailed texts (25–27). Our objective is to get researchers to think more broadly and carefully about 

random effects and the need to treat them appropriately in model specification. We also assume that all 

readers will be familiar with the language of “traditional” ordinary least squares regression (e.g., 

normality of residuals, contrast versus treatment coding, types of sums of squared errors, collinearity). If 

any of these terms are unfamiliar, we recommend studying those issues first (28–30). Mixed-effect 

models are an extension of the general linear model and as such starting with simpler models is very 

helpful for tackling more complex designs.  

Finally, we want to address some issues we will not cover. Our focus is on selecting a reasonable 

random-effects structure given the study design. As we will see this is more of a starting point and there is 

no universally correct structure (15,16,20), but there are some common incorrect structures that authors 

should avoid. Our manuscript is therefore not a general introduction to mixed-effect models (see (19,21)), 

nor we will discuss the intricacies of how one should specify fixed effects, interpret parameters in the 

presence of interactions, or select between competing models (see (8,9,25,26)). We will also not address 

advanced concepts like statistical power in mixed-effect regression (see (31,32)) nor the application of 

Bayesian estimation to mixed-effect regression (see (16)).  

With that in mind, we first define notation and terms then address common designs as follows: 1. 

Longitudinal Designs, 2. Repeated Measures Factorial Designs, and 3. Designs with Multiple Sources of 

Variance. We try to keep our discussion of these issues concise, but we provide vignettes with worked 

examples in an evolving online repository (https://keithlohse.github.io/mixed_effects_models/).  
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Notation and Terms 

In the manuscript, we focus on using R code(33) and specifically lme4 and nlme syntax(27,34) 

to illustrate how models are specified. We provide R code in the text (and supplement) to facilitate 

implementation as R is free to use, and all code and data are also provided in our online repository. We 

focus on code to make the conceptual importance of random effects clearer to readers who may be less 

familiar with mathematical notation and matrix algebra.  

In the example below, we have a single within-subject variable (W1), so we need to account for 

within-subject clustering of the data. Including a random intercept for each subject (1|subject) removes 

between-subjects variance from the outcome (DV), so that our independent variable is explaining within-

subject variance after between-subjects variance has been accounted.  

Code Snippet 1: 
# Note that R uses the ‘#’ symbol to indicate programmer comments 

 

example_model <- lmer(DV~  

                        # Fixed-effects  

                        1+ W1 +   

                        # Random-effects  

                        (1|subject),  

                        data=DATA, REML=FALSE) 

 

# Note that DV is the name of a continuous outcome, W1 is a factorial within- 

# subject variable, and subject is a factorial subject identifier. 

 

 

In the text, we indicate variables in a dataset with Courier font. For instance, we might 

generally speak of a “subject” participating in an experiment, but subject refers to a vector of subject 

identifiers (e.g., a column of “s1”, “s2”, as shown in Code Snippet 2). We also specify variables that are 

categorical factors versus those that are continuous predictors. For instance, when analyzing data from a 

randomized controlled trial, condition could be a vector of labels (e.g., “Experimental” versus 

“Control”) whereas time could be a vector of times when data were collected (e.g., 0, 10, 35 days).  
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When presenting model outputs, we show F-tests that use Satterthwaite’s approximation (35,36) 

to obtain degrees of freedom and p-values which will be of interest to most readers (but see (37–39)). We 

use Satterthwaite’s approximation for its computational efficiency and to obtain degrees of freedom that 

we can compare to factorial ANOVA results (40). There are other methods available such as the 

Kenward-Roger approximation (41) or model comparison approaches (8,42), but a detailed discussion of 

all of these approaches is beyond our scope. Similarly, there are methods like “sandwich” estimation 

(43,44) and bootstrapping (45,46), which are useful for making inferences robust to violations of 

parametric assumptions, but a detailed explanation of those methods is beyond our focus on random 

effects. Finally, we do not use r2 measures of effect-size as a direct 𝑟2 calculation is not available in 

mixed-effect models, but see (47,48) for pseudo-r2 measures.  

Defining Fixed and Random Effects 

 There are different definitions of fixed and random effects in the literature (9,18,49,50), but our 

definitions are consistent with the frequentist mixed-effect estimation employed in lme4 (27) and many 

domains of research (8,18). Fixed effects are those effects whose levels are fully represented in the data 

and beyond which we do not want to generalize. Random effects are those sampled from a larger 

population and from which we do want to generalize. For instance, in the code below, if we measured 

subjects’ heart rate at rest and again following a bout of exercise, then condition (at rest or following 

exercise) would be a fixed effect. We are only interested in the difference between that specific 

type/duration of exercise and rest. In contrast, subject would be a random effect, because we have a 

random sample of subjects, and we want to generalize from that sample back to the larger population. 

Programmatically, that could be written:   

Code Snippet 2: 
example_mod <- lmer(heart_rate~  

                        # Fixed-effects  

                        1+ condition +   

                        # Random-effects  

                        (1|subject),  

                        data=DATA, REML=FALSE) 
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# Based on the data below: 

> DATA 

  subject condition heart_rate 

1      s1       ctl         60 

2      s1        ex         72 

3      s2       ctl         42 

4      s2        ex         50 

 

Formally, the fixed and random effects in a regression model are written as a set of vectors and 

matrices: 

(Eq. 1).   𝒚 = 𝑿𝜷 + 𝒁𝛄 + 𝝐 

where y is the vector of scores on the dependent variable for each person on each occasion it is measured, 

X is the design matrix for the fixed effects, β is a vector of coefficients, Z is a design matrix for the 

random-effects, γ is a vector of random deviates, and finally ε is a vector of random errors.  

Although written in matrix notation, all we are really saying is that “the data = the model + the 

error” (42). However, our model has two components to it: the structural part, represented by the fixed-

effects, Xβ, and the stochastic part, represented by the random-effects, Zγ.(4)  

In this heart rate example, there were only 2 subjects (S1 and S2) measured in each of the 2 

conditions: during a controlled rest, “ctl”, and following exercise, “ex”. As shown in Figure 2, we have 

one subject with a higher average heart rate (S1 = 60, 72) and one subject with a lower-than-average heart 

rate (S2 = 42, 50), in each of the conditions. Our random intercept of ‘(1|subject)’ accounts for 

average between subject differences in y with the design matrix Z. This design matrix spreads out our 

random-effects, γ, into appropriate partitions for each subject; that is, every observation for S1 gets +9.9 

and every observation for S2 gets -9.9. We can then add this result to the fixed effect estimates from the 

model. The fixed effect design matrix, X, indicates that there is a constant intercept (column of 1’s) that 

gets further modified by a slope in every other instance (column of 0’s, at the first observation, and 1’s, at 

the second observation). The specific values for this intercept and slope come from the fixed-effects 
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coefficients, β. Thus, our model boils down to a regression equation for each person (i.e., 51 +

10(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛), where condition = 0 is rest and = 1 is exercise) with a unique deviate added to 

observations coming from the same subject (i.e., -9.9 or 9.9). Critically, accounting for the statistical 

dependency between observations with the appropriate random effects allows us to assume independent 

errors for each observation (estimated by the residuals, ε’s) and thus appropriately test hypotheses about 

the fixed effects.    

 

Figure 2. Illustration of matrix notation for a mixed-effect model (A), which can be expanded into more 

detailed notation for our heart rate example with two observations and two subjects (B). Given the real 

values and the values for the design matrices, X and Z, (i.e., these matrices are provided by the researcher, 

not estimated from the data) one can estimate the values of the fixed- and random-effects, β and γ (C). We 

can then combine the fixed effects and the random effects with their respective design matrices, to get one 

estimate from our model (fixed + random effects) for each subject in each condition (D). The difference 

between the model’s prediction and the actual value (𝑦’s) is the residual-error term (𝜖’s). 

 

Nested and Crossed Random Effects 

Readers entering the world of mixed-effect models are likely to have heard of random-effects 

being either nested or crossed. Nested refers to situations where levels of one factor are represented at 

only one level of another factor. Such nesting occurs in fully hierarchical models.(4,5) For instance, 

children are nested within families, students might be nested within classrooms, and classrooms may be 

nested within schools. Note that nesting is a product of the research design/environment in which a study 
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is conducted and may not be immediately apparent in how variables are coded. Figure 3A shows an 

example of unambiguously coded nested factors: students (S1-6) are nested within different 

classrooms (C1-3) with no student belonging to multiple classrooms. As seen in the cross tabulation, 

each student has only one observation in only one of the classrooms. Figure 3B shows an example of an 

ambiguously coded nested factor. The same two levels of student (S1-2) show up at each level of each 

level of classroom (C1-3). However, student S1 in class C1 is not the same student as S1 in C2 or S1 in 

C3. Although it is best practice to code unambiguously, to make the nesting clear, we can concatenate the 

classroom and student labels (classroom:student) to get a unique identifier (e.g., C1:S2). The cross 

tabulation then shows the correct nesting: one observation from each student in only one class. If we did 

not concatenate these labels, we would end up with the wrong cross tabulation with 3-observations each 

for S1 and S2, one in each classroom.  

Crossed refers to situations when different levels of one factor are represented at different levels 

of another factor. Two variables are said to be fully crossed if all levels of one factor are represented at all 

levels of the other factor. For instance, let’s say that two subjects (S1-2) had to provide responses to video 

stimuli (V1-3) in our two different conditions: at rest and 1-hr post exercise. Thus, in a balanced design 

each subject has two observations for every video, one for each condition. Our focus is on the fixed effect 

of condition, but our randomly selected subjects and video stimuli need to be accounted for as random 

effects. If there are no missing data, we would get the fully crossed design shown in Figure 2C; each 

subject has three observations, one for each video for which a response was measured. If there are some 

missing data, these factors might become partially crossed as in Figure 2D (S1 is missing an observation 

for V3, S2 is missing an observation for V2).  
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Figure 3. Schematic illustration of nested (A/B) and crossed (C/D) factors with their cross-tabulations on 

the right. C1-3 refer to levels of the categorical factor C. S1-2 refer to levels of the categorical factor S. 

V1-3 refer to levels of the categorical factor V. In the nested case, we could think about S as students and 

C and classrooms (different students are in each classroom). In the crossed case, we have an example with 

S as subjects and V as video stimuli that were watched at two different phases of an experiment (at rest 

and 1-hr post exercise), yielding two observations for each subject per video (panel C), or one to two 

observations if some subjects/videos are missing data (panel D).    

 

Using lme4 in R, researchers have several different options for inputting nested and crossed 

random effects as illustrated in Code Snippet 3:  

Code Snippet 3: 
# For students nested within classrooms we could use 

(1|classroom) + (1|classroom:student) 

  

# Or equivalent short cut using a slash “/”: 

(1|classroom/student) 

# this syntax will work for ambiguous and unambiguous coding, see Figure 2 

 

# If you have **unambiguously** coded nested factors, you can also use: 
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(1|classroom) + (1|student) 

 

 

#For fully or partially crossed random effects, you would use: 

(1|subject) + (1|video) 

 

If you have ambiguously coded nested factors, that means you would need to specify 

(1|classroom) + (1|classroom:student). Thus, there is a random intercept for each classroom 

and for each unique student (classroom:student  concatenates the levels of Classroom, n=3, and 

Student, n=2, making 6 unique labels). lme4 also provides a shorthand way of representing this using the 

‘ / ’ operator,  (1|classroom/student).  If you have unambiguously coded data, you could instead 

use (1|classroom) + (1|student) and get the same result. This code is equivalent because in 

unambiguous data, student has six levels (S1-S6) and in ambiguous data, the concatenation 

classroom:student also has six levels (‘C1:S1’ to ‘C3:S2’).  

 For fully and partially crossed random effects, one would use the syntax (1|subject) + 

(1|video). Note that this syntax has the same form as the unambiguously coded nested effects: 

(1|classroom) + (1|student). This similarity helps to illustrate that the nesting (or crossing) of the 

random effect is not a property of the model, but a property of the experimental design. The model does 

not actually “know” which factors are crossed and which are nested, rather it depends on how those data 

are coded and selection of the appropriate syntax to suit the experimental design.  Critically, a model will 

likely converge and produce an output of coefficients with any of these random effects, and no warning 

that a user has the wrong random effects. This highlights the importance of researchers thinking critically 

about how their data are coded, then selecting the appropriate random-effects syntax.  
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1. Longitudinal Designs 

Random Slopes and Intercepts 

To illustrate some of the modeling concerns with longitudinal data, let us consider the 

hypothetical study depicted in Figure 4A. This plot shows data from three different groups of participants 

who had different grades of spinal cord injury (high tetraplegia, cervical vertebral levels 1-4; low 

tetraplegia, cervical vertebral levels 5-8; or paraplegia, vertebral levels thoracic 1- sacral 5) and reported 

their functioning in the activities of daily living at approximately monthly intervals for 1.5 years as they 

underwent physical and occupational therapy. Functioning is an umbrella term for how body 

structures/functions (e.g., level of spinal cord injury) interact with personal and environmental factors 

(e.g., accessibility), to shape activity limitations and participation restrictions.(51,52) Functioning in this 

case is the opposite of disability. For ease of interpretation, we constructed a fictitious measure of 

functioning on which scores range from 0 (very high disability) to 100 (very high function) and has 

interval/ratio properties. (Health science researchers might be more familiar with this construct as 

“independence”, but we use “functioning” to avoid confusion with the statistical meaning of 

independence.)  

 As shown in Figure 4A, these data will likely violate the assumptions of the ordinary least 

squares regression model in which errors are assumed to be independent and identically distributed. This 

violation can be seen most clearly when we consider that these residuals belong not only to each time 

point but are also unique to each participant. Consider the lowest scoring participant in the C1-4 group in 

the left panel of Figure 4A. In a very simple model predicting the mean value for everyone (i.e., intercept 

only model), this participant is going to have negative residuals (i.e., the difference between the model’s 

predictions and the observed value). In contrast, a high scoring participant will have mostly positive 

residuals. The exact value of the residuals will depend on the model, but in general we have two sources 

of dependence (scores from the same person tend to be more similar and scores from neighboring time 

points tend to be more similar) that will lead to correlations in the residuals (negatives with negatives, 
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positives with positives), violating the assumption of independence. Violating this assumption is not 

trivial and can lead to considerable bias in the results of hypothesis tests.(53,54)  

 
Figure 4. (A) Hypothetical functioning scores by time from admission for three different groups of 

participants with spinal cord injury. (B) Predicted values from a random-intercepts model (shown as 

black lines) plotted over the data for the first five participants. (C) Predicted values from a linear random-

slopes model (shown as red lines) plotted over the data for the first five participants. (D) Predicted values 

from a quadratic random-slopes model (shown as blue lines) plotted over the data for the first five 

participants.   
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To account for this statistical dependence, the first step is to recognize that time points (time) 

are nested within subjects (subject) in this design. To do this, we can add a random intercept of subject 

to our model, as shown mathematically, 

(Eq. 2A.)  𝑦𝑖𝑗 = 𝛽0 + 𝛾0𝑖 + 𝜖𝑖𝑗  

where: 

(Eq. 2B.)  𝛾0𝑖~𝑁(0, 𝜎0
2) 

or programmatically:  

Code Snippet 4: 
raneff_int <- lmer(functioning~  

                        # Fixed effects  

                        1+    

                        # Random effects  

                        (1| subject),  
                        data=DATA, REML=FALSE) 

 

The predictions of this random-intercepts model are shown in Figure 4B for the first five subjects. Each 

subject gets their own unique intercept (𝛽0 + 𝛾0𝑖), but there are large residuals not explained by the model 

(𝜖𝑖𝑗). These residuals are the difference between each dot (real data) and the line (model estimate) in 

Figure 4B. By adding additional fixed and random effects to the model, we can reduce error at the level of 

the participant (i’s) and each time point (j’s).  

To improve this model, we can estimate a unique trajectory for each subject by adding a fixed and 

random effect of time. This is often referred to as a random-slopes model, shown mathematically: 

(Eq. 3A.)   𝑦𝑖𝑗 = 𝛽0 + 𝛽1(𝑡𝑖𝑚𝑒𝑖𝑗) + 𝛾0𝑖 + 𝛾1𝑖(𝑡𝑖𝑚𝑒𝑖𝑗) + 𝜖𝑖𝑗 

where: 

(Eq. 3B.)  [
𝛾0𝑖

𝛾1𝑖
] ~𝑁 (

0
0

) , (
𝜎0

2 𝜎01

𝜎01 𝜎1
2 )   

Acc
ep

ted
: In

-P
res

s



16 
 

or programmatically:  

Code Snippet 5: 
raneff_lin_slope <- lmer(functioning~  

                        # Fixed effects  

                        1+time+    

                        # Random effects  

                        (1+time| subject),  
                        data=DATA, REML=FALSE) 

 

The predictions of this linear random-slopes model can be seen in Figure 4C. Now, not only does 

each subject have a unique intercept (𝛽0 + 𝛾0𝑖), but also a unique slope (𝛽1 + 𝛾1𝑖), which greatly reduces 

the amount of residual error (𝜖𝑖𝑗). Note also that one does not need to add these fixed and random effects 

in one step (4,5,8). A fixed-effect could be added alone, which assumes that all participants changed at 

about the same rate, or a random-effect could be added alone, but that would assume the average effect of 

time is 0 across subjects. Importantly, having random-intercepts and random-slopes in the model also 

means that we must account for their covariance (𝜎01 in Eq. 3B). In applied modeling, it is common to 

find that individual differences in slopes and intercepts will be correlated: either positively because 

individuals with higher intercepts will show greater change over time (i.e., “the rich get richer”) or 

negatively correlated because individuals with lower intercepts will show greater change over time (i.e., 

“more room to grow” due to floor/ceiling effects).  

Finally, we might want to account for the nonlinearity that we observe in the data. An intuitive 

way to account for this nonlinearity that is a direct extension of the linear model is to add a quadratic 

effect of time (i.e., time2) to the model. Adding both a fixed- and random-quadratic effect of time yields: 

(Eq. 4A.)   𝑦𝑖𝑗 = 𝛽0 + 𝛽1(𝑡𝑖𝑚𝑒𝑖𝑗) + 𝛽2(𝑡𝑖𝑚𝑒𝑖𝑗
2 ) + 𝛾0𝑖 + 𝛾1𝑖(𝑡𝑖𝑚𝑒𝑖𝑗) +𝛾2𝑖(𝑡𝑖𝑚𝑒𝑖𝑗

2 ) + 𝜖𝑖𝑗  

where: 

(Eq. 4B.)  [

𝛾0𝑖

𝛾1𝑖

𝛾2𝑖

] ~𝑁 (
0
0
0

) , (

𝜎0
2 𝜎01 𝜎02

𝜎01 𝜎1
2 𝜎12

𝜎02 𝜎12 𝜎2
2

)   
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or programmatically:  

Code Snippet 6: 
raneff_quad_slope <- lmer(functioning~  

                        # Fixed effects  

                        1+time+I(time^2)+    

                        # Random effects  

                        (1+time+I(time^2)| subject),  
                        data=DATA, REML=FALSE) 

 

In this model, as shown in Figure 4D, each participant not only has a unique starting point (the random 

intercept) and a unique initial slope at the intercept (the random linear slope), but also a unique curvature 

as the trajectory changes over time (the random quadratic slope).  

Importantly, however, our model becomes much more complicated as we add random-slope 

parameters. Note that the addition of quadratic random-slope parameter did not merely add one parameter 

to our model, it actually added three: one for the variance of the quadratic slope (𝜎2
2), one for the 

covariance of intercept and the quadratic slope (𝜎02), and one for the covariance of the linear and 

quadratic slopes (𝜎12), as shown in Eq. 4B. Thus, adding fixed- and random-effects of polynomials can 

improve the fit of our model, but we need to be thoughtful when doing so. Additionally, researchers need 

to consider the centering of the time variable when adding polynomials to the model. If time is centered 

on the first observation (i.e., time = 0 reflects the first observation) then higher polynomials will often 

be highly correlated, which can create convergence issues for the model. For detailed accounts of how to 

build these polynomial models, we refer readers to more thorough sources that explain how to interpret 

these effects, test the variance explained by each random-effect, and compare models with different 

random-effects in order to choose the most parsimonious model that still fits the data appropriately (4,8).  

Random-Effects in Non-Linear Models 

 The quadratic random slopes model above is what we refer to as a curvilinear model. That is, the 

model ultimately predicts a nonlinear trajectory for each person, but the model itself is linear in its 

components: 𝛽0 is simply added to 𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖  and added to 𝛽2 ⋅ 𝑡𝑖𝑚𝑒𝑖
2 as in Eq. 4A. Forcing this 
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nonlinearity via polynomials has strengths and weaknesses. Strengths include the ease of interpreting 

polynomials (e.g., the average reader can more easily conceive of time2 compared to the log of time or 

time exponentiated) and they often correspond to hypotheses that researchers might have (e.g., the 

typical researcher might be interested in any evidence of curvature, rather than a specific power law or 

exponential law). However, a major weakness is that few biological or social systems follow a quadratic 

function (i.e., being u- or n-shaped and symmetric about a single inflection point). For instance, in Figure 

4D, it is likely that participants were approaching an asymptote that could be better captured by a truly 

nonlinear model such as an exponential or logistic model. 

A detailed discussion of nonlinear models lies outside of our focus on random effects, but see 

Chapter 6 of (4), and (26,34). To summarize however, (1) regardless of the form the nonlinear model 

takes, there is the possibility to include random effects for each parameter, and that (2) adding random 

effects can often lead to issues of over-fitting, so the random effects included in the final model should be 

justified through a combination of theoretical rationale and empirical model fit.  

 Here, we present an illustrative example of a negative exponential model. First, let us consider a 

three-parameter exponential function: 

(Eq. 5A).  𝑦𝑖𝑗 = 𝛼𝑖 + 𝛿𝑖𝑒[−(𝜆i)𝑇𝑖𝑚𝑒𝑖𝑗] + 𝜖𝑖𝑗  

there is an asymptote, 𝛼𝑖 , that defines the plateau for each person; there is a change parameter, 𝛿𝑖, that 

defines the y-axis location of a pseudo-intercept relative to the asymptote (intercept = 𝛼 − 𝛿); and there is 

a rate parameter, 𝜆i, which defines how quickly the participant will approach their asymptote (constrained 

so that 𝜆i > 0). By convention, we write these parameter estimates as 𝛼𝑖 , 𝛿𝑖 , and 𝜆i. However, these 

coefficients are not conceptually different from the 𝛽’s that we used in a linear model. Therefore, in 

the next equation, we will revert to 𝛽’s and 𝛾’s, but otherwise keep the same exponential function: 

(Eq. 5B).  𝑦𝑖𝑗 = [𝛽0 + 𝛾0𝑖] + [𝛽1 + 𝛾1𝑖]𝑒[−(𝛽2+𝛾2𝑖)𝑡𝑖𝑚𝑒𝑖𝑗] + 𝜖𝑖𝑗 
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where: 

(Eq. 5C.)  [

𝛾0𝑖

𝛾1𝑖

𝛾2𝑖

] ~𝑁 (
0
0
0

) , (

𝜎0
2 𝜎01 𝜎02

𝜎01 𝜎1
2 𝜎12

𝜎02 𝜎12 𝜎2
2

)   

Our model now consists of fixed effects, 𝛽0, 𝛽1, and 𝛽2, which apply to the whole sample, shown in 

Figure 5A. However, we also have unique asymptotes (𝛽0 + 𝛾0𝑖), pseudo-intercepts (𝛽1 + 𝛾1𝑖), and rate 

parameters (𝛽2 + 𝛾2𝑖) for each subject which are the sum of the fixed effect and the random deviate for 

that subject. These coefficients are shown for the first four subjects in Figure 5B.  

 

Figure 5. (A) Modeling the same hypothetical spinal cord injury data using a negative exponential 

function. Grey lines show the data for individual subjects. The black line shows the best fitting negative 

exponential model, with the fixed effects displayed in the panel. (B) Individual data (as points) and 

estimated trajectories (as purple lines) for the first four subjects. Equations show the coefficients for each 

participant (the group-level fixed effect from A, plus the random deviate for each participant). 

 

Programmatically, we can also see how this model would be fit using nlme(34) in Code Snippet 7. A 

worked example of this non-linear model is provided in the online repository (as there are some important 

programming considerations for nlme versus lme4).  

Code Snippet 7: 
set.seed(100) 

neg_exp_rand_mod <- nlme(functioning ~ b_0i +  

                           (b_1i)*(exp(b_2i * time)), 

                         data = DATA, 

                         fixed = b_0i + b_1i + b_2i ~ 1, 
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                         random = list(b_0i ~ 1, b_1i ~ 1, b_2i ~1), 

                         groups = ~ subject, 

                         start = c(80, -70, -1), 

                         na.action = na.omit) 

 

2. Repeated Measures Factorial Designs  

 In this section, we will consider situations in which we have categorical repeated measures, not 

continuous longitudinal data. For instance, a researcher might have a design with two within-subject 

factors of condition (conditions of rest, immediately following exercise, and following a 30-min 

delay) and altitude (laboratory simulated low- versus high-altitude environments). Although these 

measurements were taken at different times of day, a continuous measure of time is not what we want to 

model. Instead, we want to model the categorical difference between the two different sets of repeated 

measures: condition and altitude as shown in Figure 6A. Researchers who use these types of within-

subject designs have historically analyzed their data using repeated-measures ANOVA, in which all 

factors vary within a subject. In our experience, many researchers want to apply the same conceptual 

analysis but utilize some of the strengths of a mixed-effect model (e.g., avoiding listwise deletion of 

missing data). But what is the appropriate random-effects structure that will make the model analogous to 

the repeated measures ANOVA?  Consider five different options in Code Snippet 8: 

Code Snippet 8: 
# Head of the data file showing the first 12 observations (subject S1 and S2) 

 

   subject altitude condition heart_rate 

1       S1      low      rest         47 

2       S1      low       imm         63 

3       S1      low     delay         48 

4       S1     high      rest         54 

5       S1     high       imm         64 

6       S1     high     delay         62 

7       S2      low      rest         62 

8       S2      low       imm         74 

9       S2      low     delay         60 

10      S2     high      rest         65 

11      S2     high       imm         80 

12      S2     high     delay         70 

# …  

 

# Option A: Random Intercept of Subject Only 
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heart_rate ~ 1 + condition*altitude +  

             (1|subject) 

 

 

# Option B: Random Intercepts for All Factors 

heart_rate ~ 1 + condition*altitude +  

             (1|subject)+ 

             (1|condition)+ 

             (1|altitude) 

 

 

# Option C: Random Intercepts of Subject:Repeated Measures 

heart_rate ~ 1 + condition*altitude +  

             (1|subject) +  

             (1|subject:condition) +  

             (1|subject:altitude) 

 

 

# Option D: Random slopes of condition and altitude within each subject 

heart_rate ~ 1 + condition*altitude +  

             (1+condition+altitude|subject)  

 

 

# Option E: Random slopes including the interaction term 

heart_rate ~ 1 + condition*altitude +  

             (condition*altitude|subject)  

 

 

 

 

When we analyze these data using a repeated measures ANOVA, we obtain main effects of 

Altitude, F(1,9) = 58.36, Condition, F(2,18)=142.15, and the Altitude × Condition interaction, 

F(2,18)=8.63. We can use these values as a benchmark to evaluate the performance of our mixed-effect 

models. Using these values as our “gold standard” assumes that the factorial ANOVA is the model that 

researchers want given their design. We acknowledge that this may not always be the case, but we think it 

is generally best to choose random effects based on the study design and given that most researchers 

would analyze data from this study with a two-way repeated-measures ANOVA, it is reasonable to use 

that benchmark.  

Before we can evaluate these different random effects structures, it is important to briefly explain 

two different methods of estimation: Maximum Likelihood (ML) and Restricted Maximum Likelihood 

(REML). Without getting into the details of how these estimators actually work (see (4,26,27)) a key 
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difference is that ML will base estimates on all of the available information (i.e., fixed and random 

effects) but does this as an iterative procedure. As a conceptual approximation, for each iteration of ML 

the fixed components are estimated first, and then random components estimated second given those 

fixed effects. Mathematically, this happens simultaneously, but conceptually we can think about the fixed 

effects being needed first, as the sample mean needs to be calculated to then calculate the sample 

variance. As with the calculation of the sample variance, this means that variances in ML tend to be 

under-estimated.  However, this bias in ML versus REML should only substantially affect the estimation 

of the variance when the number of observations, n, is small relative to the parameters being estimated, p. 

Readers are likely familiar with this issue when calculating the variance of a sample, where we divide the 

sum of squared errors by 𝑛 − 1 (analogous to REML) rather than simply 𝑛 (analogous to ML). Thus, the 

de-biasing effect of dividing by 𝑛 − 𝑝 relative to just dividing by 𝑛 depends on the values of both n and p. 

When the number of observations is much larger than the number of parameters (n>>p), then the choice 

between REML and ML will usually have a trivial effect on the variance components. Importantly, 

however, REML does not correct this bias simply by changing the denominator of the variance 

components, but by using a fundamentally different algorithm for estimation.  

In REML, the outcome is effectively transformed into residuals, variance components are then 

iteratively estimated, and then the fixed effects are estimated using generalized least squares (for an 

accessible discussion see (55)). Thus, unlike ML where we simultaneously estimate the fixed and random 

effects in every iteration, with REML the fixed effects can essentially be treated as 0 at first because we 

are estimating residuals, and partitioning that variance based on the best fitting values of the random 

effects. In the final step of REML, we thus already have a variance/covariance matrix for the random 

effects and can estimate the best fitting fixed effects given that matrix. 

These computational differences mean that REML and ML have complementary strengths and 

weakness. For instance, if you wanted to compare models with different fixed effects to ascertain the best 

fitting model, then you need to use ML because it is agnostic to the degrees of freedom lost to the 
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different fixed effects in the different models. However, ML is also prone to under-estimate the variance 

components, especially in small samples. Thus, if there is no model comparison (e.g., you are a fitting a 

single mixed model with random effects determined by the design) or if you are comparing models with 

identical fixed effects (e.g., trying to determine only the preferred random effect structure), then REML 

will lead to less biased estimation of the variance components than ML.  

 

Figure 6. (A) Data from our hypothetical experiment in which the same subjects had their heart rate 

measured at simulated low and high altitude in the lab at three different time points: at rest, immediately 

following exercise, and following a 1-hr delay post exercise. (B) A truncated design matrix for the 

random-effects structure of the model. The first 8 observations (6 belonging to subject S1, 2 to subject 

S2) are shown in rows and the ‘Subject:Factor’ intercepts from the mixed model are shown in columns.  
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Table 1.  Summary model output for a factorial repeated measures ANOVA and mixed-effects models 

using five different random-effects and two different methods of estimation (ML versus REML). 

 Main effect of 

Altitude 

Main Effect of 

Condition 

Altitude x Condition 

Interaction 

Model (df1, df2) F-Value (df1, df2) F-Value (df1, df2) F-Value 

Repeated Measures ANOVA 

ANOVA, Type III 

sums of squares 

(1, 9) 58.36 (2, 18) 142.15 (2, 18) 8.63 

Random Effects - REML 

Option A (1, 45) 43.13 (2, 45) 199.25 (2, 45) 6.29 

Option B (1, 45) 0.50 (2, 45) 1.52 (2, 45) 6.29 

Option C (1, 9) 58.35 (2, 18) 142.15 (2, 18) 8.63 

Option D* (1, 12) 43.88 (2, 9) 123.51 (2, 27) 10.51 

Option E† na na na na na na 

Random Effects - ML 

Option A (1, 50) 47.92 (2, 50) 221.39 (2, 50) 6.99 

Option B ‡ (1,50) 47.92 (2, 50) 221.39 (2, 50) 6.99 

Option C (1, 10) 64.84 (2, 20) 157.95 (2, 20) 9.59 

Option D* (1, 13) 48.77 (2, 10) 137.26 (2, 30) 11.68 

Option E† na na na na na na 

Note. Readers can see all the underlying code, including the standard ANOVA functions in the online 

repository. Df1 refers to the numerator degrees of freedom and df2 refers to the denominator degrees of 

freedom for the calculation of the F-statistic. REML = Restricted maximum likelihood estimation; ML = 

Maximum Likelihood estimation. 

* = returns warning “boundary (singular) fit: see help('isSingular')”, correlations between random-effects 

approach 1, but there is no zero variance for every random effect.   

† = Leads to an error, “Error: number of observations (=60) <= number of random effects (=60) for term 

(condition * altitude | subject); the random-effects parameters and the residual variance (or scale 

parameter) are probably unidentifiable”. Without replicates, this model is over-specified and cannot be fit 

to these data. 

‡ = returns warning “boundary (singular) fit: see help('isSingular')”, the variance for (1|altitude) and 

(1|condition) both go to zero, effectively leaving this the same as Option A when fit using maximum 

likelihood.   

 

Option A: Random Intercept of Subject Only – A Poor Choice. 

In our experience, many researchers select Option A, including only a random intercept of 

subject, (1|subject). Including a random intercept for each subject is necessary but not sufficient to 

account for all the statistical dependencies in this within-subject design. This can be seen in Table 1, 

where we contrast the denominator degrees of freedom and F-values from a mixed-factorial ANOVA(40) 

and the five different mixed-effect models. Option A leads to greatly inflated denominator degrees of 

freedom for each of the effects; the denominator degrees of freedom are all 45, much larger than the 
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corresponding 9 or 18 degrees of freedom in the repeated measures ANOVA. This spuriously increases 

statistical power (note the larger F-values for each test), in a loose sense making it seem as though we 

have more independent pieces of data than we do. Inspecting the degrees of freedom helps to quantify the 

conceptual problem with this random-effects structure: there a several “strata” in the data (56) at which 

we could look at the effect of altitude and condition. With N=60 observations and only a random intercept 

of subject, we have essentially divided the data into two strata: a between subjects’ stratum (n=10, df=9 

after the grand mean is estimated) and within subjects’ stratum (df=50 after between subject variance is 

removed). However, not all observations within a subject are independent of each other, as each subject 

has multiple observations at each altitude and condition. 

Option B: Random Intercepts for All Factors – A Very Bad Choice. 

 To account for the fact that observations are clustered within subjects, altitudes, and conditions, 

we have often seen authors use a random-effects structure like Option B, treating altitude and condition as 

random effects. At first, these three random intercepts might seem reasonable, but there is a major 

conceptual flaw with this model: Our observations are not crossed by altitude and condition overall, they 

are only crossed by altitude and condition within each subject. The correct way to handle this is by 

nesting altitude and condition within each subject and accounting for those crossed factors at the within-

subject level, which is precisely what we do in Option C. Before discussing that structure, however, let us 

dwell on Option B as an example of what not to do. As we will see, it is bad practice to enter a variable as 

both a fixed and random effect, because it is statistically non-sensical. 

 When estimated with REML, the main-effects for altitude and condition all but disappear with 

F(1, 45)=0.50 and F(2,45)=1.52, respectively. These F-values are greatly reduced because we have pulled 

out the variance due to altitude and condition in our random intercepts prior to the estimation of 

the fixed effects, leaving a trivial amount of variation to be explained. Recall that for REML, variance 

components are estimated from a residualized outcome, and fixed effects are then estimated using 
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generalized least squares given the matrix of random effects. The interaction term remains similar to what 

we saw with Option A, F(2,45)=6.29, because that variance is not accounted for by the random intercepts.  

When estimated with ML, the results of Option B are identical to Option A because now the fixed 

effects are iteratively estimated with the redundant random effects, which leaves no variance to be 

explained by the random intercepts of altitude and condition. The variance for both random intercepts is 

now estimated to be 0 (see footnote ‡ in Table 1), and we are effectively left with a random intercept of 

subject. 

These wildly varying estimates for altitude and condition help to illustrate how our different 

estimators work (i.e., REML vs. ML) and hopefully illustrate how incorrect Option B is. It is non-sensical 

to treat altitude as both a fixed effect and random effect, it needs to be one or the other. Note, how 

this is also different from longitudinal models where we estimated a fixed effect of time, but also had a 

random slope for time within each subject (i.e., (1+time|subject)). It is perfectly acceptable to 

estimate a fixed effect at the group-level, while accounting for individual differences in an effect through 

the random effects, discussed in Options C-E below. 

Option C: Random Intercepts for Subject:Repeated Measures – A Good Choice. 

Random effects Option C is a very good choice to appropriately account for the statistical 

dependencies in these data. In that model, the degrees of freedom and the F-values match the repeated 

measures ANOVA exactly using REML. These outputs match because not only are we accounting for the 

fact that data-points come from the same subject, (1|subject), but we also account for the fact that 

each subject can respond differently to each altitude, (1|subject:altitude), and each condition, 

(1|subject:condition). As shown in a truncated design matrix in Figure 6B, having a unique 

intercept for each subject:factor accounts for the fact that altitude and condition are crossed factors, within 

each subject. We have thus set up appropriate strata in the data at which we can evaluate our fixed effects. 

(56)  
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Note also that we cannot include an intercept of (1|subject:condition: 

altitude)because that would amount to a random deviate for every observation, leaving no residual 

error (i.e., such a three-way random intercept is confounded with the error term when we only have one 

observation person per condition, and lme4 would return an error).  

As shown in Table 1, if we use ML instead of REML the results no longer match the ANOVA 

precisely. The degrees of freedom are slightly increased, as would expected given the differences in 

estimation, and this in turn leads to slightly increased F-values. Thus, the choice of estimation method 

will have an effect when it comes to statistical inference, but if we fit these models in a large data set 

(where 𝑛 >> 𝑝), the practical difference between REML and ML would be small. 

It is important to note that this random-intercepts method gets more complicated with more 

within-subject factors. For instance, if we were to add a third within-subject factor to a fully factorial 

design (call it W3), then not only would this add an additional fixed effect, but it adds considerable 

statistical dependency that needs to be accounted for in the random effects. In that situation, observations 

come not only from each subject in each condition, but from each subject in each combination of the 

conditions, so we would need to add intercepts to account for the two-way interactions within each 

subject (e.g., (1|subject:condition:altitude) + (1|subject:altitude:W3) + 

(1|subject:condition:W3)). It is also important to note that our heuristic for the degrees of 

freedom may start to breakdown in more complex designs and although the degrees of freedom will be 

similar to the ANOVA, they will no longer match exactly (e.g., with sparse random-effects when there 

may only be two-levels of a factor).(56) To save on space, we present a detailed example of a three-way 

within-subject design in the online supplement. 

Option D: Random Slopes of Condition and Altitude within in Subject – Also a Good Choice. 

Another reasonable alternative would be to include random slopes for each factor within each 

subject as in Option D. Conceptually, this model accounts for the within-subjects nature of the design 
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similar to Option C, but it approaches the problem in a very different way and with more complexity that 

may not always be desirable. First, recall that when fitting random slopes, we do not only estimate their 

variance, but also their covariance. This allows us to account for potential correlations between the effect 

of altitude and condition across subjects, which is good, but increases the number of parameters being 

estimated, which is potentially problematic.  

To simplify the model, one could also constrain the random slopes to be independent (e.g., using 

“||” in place of “|” in lme4 syntax, and see (20)). However, one would still run into a second issue which 

is that random slopes are actually a series of contrasts for categorical factors. That is, for altitude we 

only have two levels and therefore we need only one random slope to capture that difference. For 

condition we have three levels and therefore two random slopes are needed, which would also add 

more covariances if the model is not constrained. As the number of levels of the categorical factor/s 

increases, the model becomes substantially more complicated.  

Third, and finally, when using this random-slopes approach, the user needs to cognizant of what 

kind of contrasts are being used (as with centering of continuous variables). By default, R will use 

treatment coding with the first level, alpha-numerically, treated as the reference group, but this may not 

always be desirable and will affect the estimates and interpretation of the model, particularly when 

interactions are present. 

Option E: Random slopes including the interaction term – Only if you have replicates! 

Estimating the variance around our effects is a very useful step towards understanding individual 

differences (e.g., how much does the effect of altitude differ between people?), so the random slopes 

structure in Option D is appealing. Ideally, we would like to take this a step further and get an estimate of 

how the interaction between altitude and condition differs between people as well, so we can add the 

random slopes that capture that interaction in Option E. However, we cannot actually estimate this model 

given the current data. With only one observation for each subject in each condition, if we try to fit a 
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unique three-way interaction for every subject, we will have perfect prediction and no residual error (as 

with a random intercept of (1|subject:condition:altitude)). This can be seen in the † 

footnote under Table 1, we only have 60 observations and if we want random slopes for each factor and 

their interaction, then we end up with 60 random effects. As the error message says, “Without replicates, 

this model is over-specified and cannot be fit to these data”. 

Replicates, as the name implies, are repeated observations at the same level of the data. For 

instance, assume that rather than one average heart rate for each subject in each condition, we ran our 

subjects through our exercise protocol on two different occasions with a sufficient washout period in 

between exposures to reduce order effects. We would now have two observations for each subject in each 

combination of altitude and condition, yielding 120 observations. Having only two observations per 

person may not be enough to get very stable estimates of the variance for these within-subject effects, but 

it would give us the observations necessary to estimate a model using Option E. Thus, having replicates is 

often very desirable but comes with increased complexity and often implicit assumptions about which an 

author might not be aware. For instance, let’s be generous and say that I have 10 observations for every 

combination of altitude and exercise. I could estimate a model using Option E, but that would assume that 

all 10 replicates are independent of each other. Depending on how those observations were obtained, 

independence might not be a tenable assumption. For instance, there are likely temporal order effects with 

neighboring observations being more similar. As a result, our model might need to become more 

complex, for instance estimating a covariance structure for the residuals rather than assuming that all 

errors are independent. (26,34) 

3. Designs with Multiple Sources of Variance 

 A major strength of mixed-effect models over traditional ANOVA is their ability to handle 

different sources of variance simultaneously. We can see these different sources of variance when we 

have multiple factors that are random samples. For instance, this can happen when we have multiple 

levels of nesting, such as time within patients and patients within hospitals. That is, we want to generalize 
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from our sample of patients and our sample of hospitals back out to a theoretical population of patients 

and population of hospitals, but we also need to account for the statistical dependence of patients from the 

same hospital. This sort of hierarchical nesting is why many mixed-effect models are sometimes referred 

to as “multi-level models” (MLM’s (9)) or “hierarchical linear models” (HLM’s (5)). In the Variation in 

Multiple Nested Factors section below, we illustrate this kind of hierarchical nesting. We use the same 

hypothetical spinal cord injury data from the previous example of longitudinal data analysis. However, we 

now pretend that these patients were recruited and assessed at different study sites; so, we have time 

within subjects and subjects within sites. See Figure 7A.  

We can also see different sources of variation when participants are repeatedly exposed to 

stimuli. In speech pathology and audiology, the stimuli might be a series of words that the participant is 

hearing or saying. The words are a random sample of possible words and therefore we want to account for 

the variance in our sample of words in the same way we account for the variance in our sample of 

subjects. In the Variation in Multiple Crossed Factors section below, we will use a linguistic example 

from speech recognition (57). These response time data have been modified from the original data for 

didactic purposes (19) and illustrate how we can account for variation due to both our sample of subjects 

and the sample of words. See Figure 7B/C.  

In that experiment, participants listened to words in both an audio only modality in which a 

speaker was heard but not seen, and in an audiovisual modality in which the speaker could both seen and 

heard. Across all participants words were presented in both modalities, but each word was presented in 

only one modality for a given subject. The dependent variable was subjects’ response time in a secondary 

task in which they had to decide if a tactile stimulus was presented for a short, moderate, or long duration. 

The response on this secondary task is thus an index of the cognitive demand of processing the word. If 

the response time is faster, we can infer that the primary task required fewer cognitive resources. If the 

response time is slower, we can infer that the primary task required more cognitive resources. The 
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researchers hypothesized that participants would be slower to respond in the audiovisual condition 

because participants would be processing both the audio and visual information.   

 
 

Figure 7. (A) Data from the hypothetical spinal cord injury study. Functioning in daily life is shown by 

time since admission and the study site at which the data were collected. Different study sites are shown 

in the fill colors, lines connect data points for individual subjects. (B/C) Data from the adapted linguistics 

example. Panel B shows response times as a function of the first ten words in the stimulus list (out of 543 

total words). Points show the response time for individual subjects. Panel C shows response times as a 

function of the first ten subjects (out of 53 total subjects). Points show response times for individual 

words. In both B and C, points are color coded by the modality in which they were presented audio only, 

or in an audiovisual modality in which the speaker was seen. 
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Variation in Multiple Nested Factors (e.g., Subjects within Study Sites) 

Returning to our hypothetical spinal cord injury data, in Figure 7A we can see multiple sources of 

statistical dependency. Time points are nested within individual subjects, but now we also have subjects 

nested within different research sites (A-D). We can account for this additional level of nesting in our R 

code by using a random intercept of study site. We also include a fixed effect of spinal cord injury grade 

(C1-4, C5-8, T1-S5) and its interactions with time: 

Code Snippet 9: 
raneff_quad_site<-lmer(functioning~  

                           # Fixed-effects  

                           1+time*grade+I(time^2)*grade+  

                           # Random-effects  

                           (1+time|subject)+(1|site), data=DAT1, REML=FALSE) 

 

Fitting this model yields the random and fixed effects shown in Table 2, and yields the warning 

message “boundary (singular) fit: see ?isSingular”. Looking at the random-effects 

output in Table 2 we can see why: the variance for the site random-effect is estimated to be zero, which 

is a “boundary” because variances can only be between [0, +∞). Correlations are similarly bounded 

between [-1, +1]. In this case, it would be reasonable to drop the site random effect from the model, as 

there is no variance being reliably explained by the different study sites.  

Table 2.  Summary of the model output for spinal cord injury data, including a random intercept for the 

different study sites.  

Random Effects 

Group Name Variance SD Correlation 

Subject Intercept 21.35 4.62  

 Time 48.01 6.93 -0.08 

Site Intercept 0.00 0.00  

Residual  11.83 3.44  

Fixed Effects 

Effect  F-Value df1, df2 p-value 

Grade 50.73 2, 50.7 <0.001 

Time 1450.21 1, 140.4 <0.001 

Time 2 1104.46 1, 640.4 <0.001 

Time x Grade 3.83 2, 141.1 0.024 
Time2 x Grade 1.31 2, 640.5 0.271 

* Note that the number of observations = 720, subjects = 40, and sites = 4. 
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However, there are a few considerations for dropping this random effect from the model. First, 

we only have four study sites in this example, which is very small number of levels for the estimation of a 

random-effect (58,59). If we still wanted to account for differences between sites, we could include site as 

a fixed effect. If we include it as a fixed effect, we again see that there is very little variance explained by 

study site, F(3, 40.0)=0.97, p=0.414. So, in a practical sense, we can account for the variation due to 

study site in either format. Philosophically though, these two approaches are different. Treating study site 

as a fixed effect assumes that these are the only study sites in which we are interested. Treating study site 

as a random effect assumes sites are a random sample of possible sites. In either case, we should think 

about this lack of explained variance as a null result. That is, we have not proven that there is 0 variation 

between study sites, we have simply failed to find evidence of a difference between study sites – and the 

absence of evidence is not evidence of absence (60). 

Variation in Multiple Crossed Factors (e.g., Variation in Subjects and Stimuli)  

 In our linguistic example, we must account for the fact we have multiple observations not only 

for each participant, but also for each stimulus. Note that unlike the longitudinal data, there is no reliable 

pattern to the data within a participant, because the order of the stimuli was randomized for each person. 

As such, we can account for this statistical dependence with random intercepts of subject and 

stimulus, and a fixed effect of the modality of the stimuli (modality).  

Code Snippet 10: 
rand01 <- lmer(log(RT)~ 

                 # Fixed Effects  

                 1+modality+  

                 # Random Effects 

                 (1|subject)+(1|stimulus), 

               data=DAT2, REML=TRUE) 

 

 

As shown in Table 3, there was relatively less variability due to stimuli (SD = 0.017) compared to 

subjects (SD=0.152). Accounting for these sources of variation, there was a statistically significant effect 
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of modality, such that participants were generally slower to respond to the audiovisual stimuli compared 

to the audio-only stimuli, b=0.079, F(1,21440)=541.48, p<0.001. 

 

Table 3.  Summary of the model output for the linguistic data, including random intercepts of both 

participant and stimulus.  

Random Effects 

Group Name Variance SD 
 

Stimulus Intercept <0.001 0.017  

Subject Intercept 0.023 0.152 
 

Residual  0.061 0.248  

Fixed Effects 

Effect  F-Value df1, df2 p-value 

Modality 541.48 1, 21440 <0.001 

* Note that the number of observations = 21,679, stimuli = 543, and subjects = 53. 

 

However, we should take note of the denominator degrees of freedom for this F-test, which are 

21,440. This makes sense given the large number of observations: 543 stimuli x 53 participants - missing 

data = 21,679 observations. However, this is much larger than what we would expect from a comparable 

ANOVA design if modality had been included as a within-subject factor: 𝑑𝑓2 = (𝑁 − 1)(𝑘 − 1) =

(53 − 1)(2 − 1) = 52. The reason that these degrees of freedom are so much larger is because we have 

numerous replicates within each subject. That is, for each subject in each modality, we have multiple 

observations from several different stimuli. In this situation, we have a few options. We could aggregate 

the data down to one observation for each subject in each modality. This would make our mixed model 

more like a traditional repeated measures ANOVA with a within-subject factor of modality. Indeed, if we 

averaged over stimuli and then ran the code below, we would obtain a main effect of modality with 

F(1,52)=45.94, p<0.001. 

Code Snippet 11: 
DAT3 <- DAT2 %>% group_by(subject, modality) %>% 

  summarize(RT = mean(RT)) 

 

agg_mod <- lmer(log(RT)~ 

                 # Fixed Effects  

                 1+modality+  

                 # Random Effects 

                 (1|subject), 
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               data=DAT3, REML=TRUE) 

 

However, aggregating over stimuli would remove all the variability due to the individual stimuli 

and increase the Type I error rate. Thus, if we want to estimate the variability due to the specific stimuli 

we chose, we need to retain the different observations for the different stimuli. Instead of aggregating, we 

could retain the random intercept of stimulus, and add a random slope for the modality within each 

subject as in Code Snippet 12. 

Code Snippet 12: 
rand_slopes <- lmer(log(RT)~ 

                 # Fixed Effects  

                 1+modality+  

                 # Random Effects 

                 (1+modality|subject)+(1|stimulus), 

               data=DAT2, REML=TRUE) 

 

We can see the results from this model in Table 4. By including a random intercept for stimuli 

and a random slope for modality within each subject, we can effectively estimate the variance due to the 

different stimuli (SD = 0.075) while reducing the degrees of freedom in the F-test, F(1, 51.9)=52.86, 

p<0.001. As a conceptual approximation, the reason the denominator degrees of freedom have shrunk 

from 21,440 to 51.9 is because we are no longer treating the modality effect as being estimated from 

21,679 data points, but from 53 observations of the modality effect, one for each participant. Thus, if the 

model converges, including the random slope is going to be more appropriate when we have replicates in 

the data.  

Including this random slope also raises an important question, why did we nest the random slopes 

within subjects and not within stimuli? That is, why “(1+modality|subject)” and not 

“(1+modality|stimulus)”? Or why not both random slopes at once? The answer to this question is 

complicated and we direct readers to Frossard and Renaud (20) for a more detailed explanation of which 

random-slopes are allowable. In short, however, we could add a random slope for modality within stimuli 

in this example because each stimulus was presented in each modality across subjects (although it was 
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presented in only one modality for a given subject). As such, modality varies within stimuli much the 

same way it varies within subjects, so both random slopes could be included in this example. However, 

this more complicated model fails to converge without some tinkering with different optimizers (see 

(19)), so for simplicity we present only the model with “(1+modality|subject)”.  

Broadly speaking, a random slope will be allowable if the slope factor varies within a cluster of 

observations (i.e., as modality varied within a subjects and within stimuli above). In contrast, a random 

slope would not be allowable if the slope factor varies between clusters of observations. For example, we 

could have a random slope of “stimulus length” within subjects because all subjects heard words of 

various lengths. However, we could not have a random slope of stimulus length within stimuli, because 

length varies between stimuli not within stimuli.  

Table 4.  Summary of the model output for the linguistic data, including random intercepts of both 

participant and stimulus, and a random effect of modality within each participant.  

Random Effects 

Group Name Variance SD Correlation 

Stimulus Intercept <0.001 0.017  

Subject Intercept 0.025 0.159 
 

 Modality 0.006 0.075 -0.29 

Residual  0.060 0.245  

Fixed Effects 

Effect  F-Value df1, df2 p-value 

Modality 52.86 1, 51.9 <0.001 

* Note that the number of observations = 21,679, stimuli = 543, and subjects = 53. 

 

Conclusions 

First, we would like to thank readers for sticking with us and making it through a rather lengthy 

monograph. Second, we hope that this gives readers a solid starting point when thinking about what 

random-effects to include in their mixed-effect model given their study design. Longitudinal designs, 

factorial repeated measures, and studies with multiple sources of variance all have unique considerations 

for how to appropriately deal with statistical dependency in the data. We encourage practitioners to work 

through the vignettes provided in the online repository to get a better practical understanding of how to 
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build these models in R and how to interpret the results. And finally, we hope readers have an 

appreciation for the complexity one faces when using mixed-effect models. The nuances of these 

modeling choices are not trivial and can have substantial effects on one’s statistical conclusions.   
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