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Mixed-effect models are flexible tools for researchers in a
myriad of fields, but that flexibility comes at the cost of
complexity and if users are not careful in how their model
is specified, they could be making faulty inferences from
their data. We argue that there is significant confusion
around appropriate random effects to be included in a
model given the study design, with researchers generally
being better at specifying the fixed effects of a model,
which map onto to their research hypotheses. To that
end, we present an instructive framework for evaluating
the random effects of a model in three different situations:
(1) longitudinal designs; (2) factorial repeated measures;
and (3) when dealing with multiple sources of variance.
We provide worked examples with open-access code and
data in an online repository. We think this framework
will be helpful for students and researchers who are new
to mixed effect models, and to reviewers who may have
to evaluate a novel model as part of their review.
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Introduction
Mixed-effect models (Fisher, 1919; McLean et al., 1991; Robinson, 1991) are an increasingly popular
analytical method in a wide range of disciplines. As a crude illustration of its popularity, we conducted
a literature search in PubMed to identify articles that reported using an Analysis of Variance (ANOVA)
versus mixed-effect models. While ANOVA was by the far the dominantly used term, various references to
mixed-effect models (sometimes also called mixed-effects regression, mixed models, or multi-level models
(Raudenbush & Bryk, 2002; Singer & Willett, 2003)) have been closing the gap. This increase in the
use of mixed-effect models is multi-causal, but broadly we think that researchers are attracted to mixed-
effect models for their flexibility: mixed-effect models can deal with missing data more easily; mixed-effect
models highlight individual differences in the estimation of variance components; for longitudinal designs,
mixed-effect models explicitly model individual trajectories and variability in time itself; and mixed-effect
models allow for more than one source of variability to be estimated simultaneously (Garcia & Marder,
2017; Lohse et al., 2020; Long, 2012; Snijders & Bosker, 2012). The mixed-effect model also extends to
other statistical applications such as meta-analysis (Sera et al., 2019), measurement (Van der Elst et al.,
2016), and mediation models (Kenny et al., 2003; Preacher et al., 2010). Finally, as with general linear
models, mixed-effect models can be extended to handle categorical outcome measures (Agresti, 2015).

Figure 1. Frequency of hits on PubMed searched 2021-11-15 for “ANOVA”, “mixed-effect/s” (or “mixed
effect/s”) and “repeated measures+ANOVA” (or “RM” + “ANOVA”).

The tremendous power of mixed models comes at the cost of analytical complexity. Despite excellent
resources on the topic (Long, 2012; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), researchers
are often faced with difficult choices and sometimes conflicting recommendations (Barr, 2013; Bates,
Kliegl, et al., 2015), and may not have the time or statistical expertise necessary to understand these
resources (Silk et al., 2020), as many references are quite mathematically dense. Although there are
domain-specific guides that are written to address particular types of research designs and use examples
familiar to subject-matter experts in that domain (e.g., B. M. Bolker et al. (2009) and Brown (2021)),
confusion surrounds this complicated topic.

Our own personal experience, which includes a non-random sample of dissertation committees,
manuscript reviews, and questions at workshops on mixed-effect models, shows that a major part of
this confusion is in choosing the appropriate random effects for a model, with models often being mis-
specified. Researchers generally appear better at selecting and interpreting appropriate fixed effects
to test their hypotheses. These fixed effects correspond most often to the hypotheses that guided the
research. However, the inferences about fixed effects depend on the random effects of the model.
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Inappropriate specification of random effects has substantial negative consequences on the credibility
of the statistical inference (Frossard & Renaud, 2019). For instance, including only a random effect
of participant in a study with multiple within-subject factors can make it seem like the researchers
have more independent data than they have, spuriously shrinking the standard error and increasing the
Type I error rate (an example of under-specification). Conversely, including fully crossed random effects
of participants and stimuli in an experiment where there is only one observation per person for each
stimulus can leave no residual error, creating a non-identifiable matrix (an example of over-specification).
Or the researchers may simply omit a random-effect that is justified either by the design or the empirical
variability in the data (an example of mis-specification). Thus, reasonable specification of random effects
is critical to making reasonable inferences about the fixed effects (Faraway, 2016; Pinheiro & Bates, 2006;
Singmann & Kellen, 2019).

Our primary contention is that there is confusion among researchers about how to correctly specify mixed-
effect models (as Frossard & Renaud (2019), Nelder (2007), Voss (1999), and Senn (2003) have argued).
Our goal is thus to provide a technically sound but accessible and didactic paper to help researchers
choose appropriate random effects as a starting point based on their study design. Our target audience
is busy researchers who are not experts: such as, novices who are starting out with mixed-effect models,
researchers who are familiar with the basic concept but unsure how to properly specify a model in a
more complicated design, and reviewers tasked with evaluating a novel model during peer-review.

We will not be able to move someone from novice to expert with the concepts presented in this manuscript,
but we can help researchers avoid some fundamental errors and prepare them to tackle more detailed texts
(Bates, Machler, et al., 2015; Faraway, 2016; Pinheiro & Bates, 2006). Our objective is to get researchers
to think more broadly and carefully about random effects and the need to treat them appropriately in
model specification. We also assume that all readers will be familiar with the language of “traditional”
ordinary least squares regression (e.g., normality of residuals, contrast versus treatment coding, types of
sums of squared errors, collinearity). If any of these terms are unfamiliar, we recommend studying those
issues first (Cohen et al., 2003; Fox, 2016; Fox & Weisburg, 2011). Mixed-effect models are an extension
of the general linear model and as such starting with simpler models is very helpful for tackling more
complex designs.

Finally, we want to address some issues we will not cover. Our focus is on selecting a reasonable random-
effects structure given the study design. As we will see this is more of a starting point and there is
no universally correct structure (Barr, 2013; Bates, Kliegl, et al., 2015; Frossard & Renaud, 2019), but
there are some common incorrect structures that authors should avoid. Our manuscript is therefore not
a general introduction to mixed-effect models (Brown (2021); Singmann & Kellen (2019)), nor we will
discuss the intricacies of how one should specify fixed effects, interpret parameters in the presence of
interactions, or select between competing models (Faraway, 2016; Long, 2012; Pinheiro & Bates, 2006;
Snijders & Bosker, 2012). We will also not address advanced concepts like statistical power in mixed-effect
regression (Westfall et al., 2014) nor the application of Bayesian estimation to mixed-effect regression
(Bates, Kliegl, et al., 2015). With that in mind, we first define notation and terms then address common
designs as follows: 1. Longitudinal Designs, 2. Repeated Measures Factorial Designs, and 3. Designs
with Multiple Sources of Variance. We try to keep our discussion of these issues concise, but we provide
vignettes with worked examples in an evolving online repository.

Notation and Terms
In the manuscript, we focus on using R code (2023) and specifically lme4 (Bates, Machler, et al., 2015)
and nlme (Pinheiro et al., 2022) syntax to illustrate how models are specified. We provide R code in
the text (and supplement) to facilitate implementation as R is free to use, and all code and data are
also provided in our online repository. We focus on code to make the conceptual importance of random
effects clearer to readers who may be less familiar with mathematical notation and matrix algebra.

In the example below, we have a single within-subject variable (W1), so we need to account for within-
subject clustering of the data. Including a random intercept for each subject (1|subject) removes
between-subjects variance from the outcome (DV), so that our independent variable is explaining
within-subject variance after between-subjects variance has been accounted.
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Code Snippet 1

# Note that R uses the ‘#' symbol to indicate programmer comments

example_model <- lmer(DV~
# Fixed-effects
1+ W1 +
# Random-effects
(1|subject),
data=DATA, REML=FALSE)

# Note that DV is the name of a continuous outcome, W1 is a factorial within-
# subject variable, and subject is a factorial subject identifier.

In the text, we indicate variables in a dataset with code markdown notation. For instance, we might
generally speak of a “subject” participating in an experiment, but subject refers to a vector of subject
identifiers (e.g., a column of “s1”, “s2”, as shown in Code Snippet 2). We also specify variables that
are categorical factors versus those that are continuous predictors. For instance, when analyzing data
from a randomized controlled trial, condition could be a vector of labels (e.g., “Experimental” versus
“Control”) whereas time could be a vector of times when data were collected (e.g., 0, 10, 35 days).

When presenting model outputs, we show F-tests that use Satterthwaite’s approximation (Kuznetsova
et al., 2017; Satterthwaite, 1941) to obtain degrees of freedom and p-values which will be of interest to
most readers (Benjamin & Berger, 2019; Goodman, 2019; but also see Wasserstein et al., 2019). We use
Satterthwaite’s approximation for its computational efficiency and to obtain degrees of freedom that we
can compare to factorial ANOVA results (Lawrence, 2016). There are other methods available such as
the Kenward-Roger approximation (Kenward & Roger, 1997) or model comparison approaches (Judd et
al., 2017; Long, 2012), but a detailed discussion of all of these approaches is beyond our scope. Similarly,
there are methods like “sandwich” estimation (Gurka et al., 2011; Kauermann & Carroll, 2001) and
bootstrapping (Efron & Tibshirani, 1993; Mason et al., 2021), which are useful for making inferences
robust to violations of parametric assumptions, but a detailed explanation of those methods is beyond
our focus on random effects. Finally, we do not use 𝑅2 measures of effect-size as a direct 𝑅2 calculation
is not available in mixed-effect models, but see Johnson (2014) & Nakagawa & Schielzeth (2012) for
pseudo-𝑅2 measures.

Defining Fixed and Random Effects
There are different definitions of fixed and random effects in the literature (B. M. Bolker et al., 2009;
Gelman, 2005; Snijders & Bosker, 2012), but our definitions are consistent with the frequentist mixed-
effect estimation employed in lme4 (Bates, Machler, et al., 2015; Kuznetsova et al., 2017) and many
domains of research (B. M. Bolker et al., 2009; Long, 2012). Fixed effects are those effects whose levels
are fully represented in the data and beyond which we do not want to generalize. Random effects are
those sampled from a larger population and from which we do want to generalize. For instance, in the
code below, if we measured subjects’ heart rate at rest and again following a bout of exercise, then
condition (at rest or following exercise) would be a fixed effect. We are only interested in the difference
between that specific type/duration of exercise and rest. In contrast, subject would be a random effect,
because we have a random sample of subjects, and we want to generalize from that sample back to the
larger population. Programmatically, that could be written:
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Code Snippet 2

example_mod <- lmer(heart_rate~
# Fixed-effects
1+ condition +
# Random-effects
(1|subject),
data=DATA, REML=FALSE)

# Based on the data below:
> DATA

subject condition heart_rate
1 s1 ctl 60
2 s1 ex 72
3 s2 ctl 42
4 s2 ex 50

Formally, the fixed and random effects in a regression model are written as a set of vectors and matrices:

Equation 1
𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖

where 𝑦 is the vector of scores on the dependent variable for each person on each occasion it is measured,
𝑋 is the design matrix for the fixed effects, 𝛽 is a vector of coefficients, 𝑍 is a design matrix for the
random-effects, 𝛾 is a vector of random deviates, and finally 𝜖 is a vector of random errors.

Although written in matrix notation, all we are really saying is that “the data = the model + the error”
(Judd et al., 2017). However, our model has two components to it: the structural part, represented by
the fixed-effects, 𝑋𝛽, and the stochastic part, represented by the random-effects, 𝑍𝛾 (Singer & Willett,
2003).

In this heart rate example, there were only 2 subjects (S1 and S2) measured in each of the 2 conditions:
during a controlled rest, “ctl”, and following exercise, “ex”. As shown in Figure 2, we have one subject
with a higher average heart rate (S1 = 60, 72) and one subject with a lower-than-average heart rate
(S2 = 42, 50), in each of the conditions. Our random intercept of (1|subject) accounts for average
between subject differences in 𝑦 with the design matrix 𝑍. This design matrix spreads out our random-
effects, 𝛾, into appropriate partitions for each subject; that is, every observation for S1 gets +9.9 and
every observation for S2 gets -9.9. We can then add this result to the fixed effect estimates from the
model. The fixed effect design matrix, X, indicates that there is a constant intercept (column of 1’s)
that gets further modified by a slope in every other instance (column of 0’s, at the first observation,
and 1’s, at the second observation). The specific values for this intercept and slope come from the
fixed-effects coefficients, 𝛽. Thus, our model boils down to a regression equation for each person (i.e.,
51+10(condition), where condition = 0 is rest and = 1 is exercise) with a unique deviate added to
observations coming from the same subject (i.e., -9.9 or 9.9). Critically, accounting for the statistical
dependency between observations with the appropriate random effects allows us to assume independent
errors for each observation (estimated by the residuals, 𝜖’s) and thus appropriately test hypotheses about
the fixed effects.

Nested and Crossed Random Effects
Readers entering the world of mixed-effect models are likely to have heard of random-effects being either
nested or crossed. Nested refers to situations where levels of one factor are represented at only one
level of another factor. Such nesting occurs in fully hierarchical models (Raudenbush & Bryk, 2002;
Singer & Willett, 2003). For instance, children are nested within families, students might be nested
within classrooms, and classrooms may be nested within schools. Note that nesting is a product of the
research design/environment in which a study is conducted and may not be immediately apparent in
how variables are coded. Figure 3A shows an example of unambiguously coded nested factors: students
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Figure 2. Illustration of matrix notation for a mixed-effect model (A), which can be expanded into
more detailed notation for our heart rate example with two observations and two subjects (B). Given
the real values and the values for the design matrices, X and Z, (i.e., these matrices are provided by the
researcher, not estimated from the data) one can estimate the values of the fixed- and random-effects,
𝛽 and 𝛾 (C). We can then combine the fixed effects and the random effects with their respective design
matrices, to get one estimate from our model (fixed + random effects) for each subject in each condition
(D). The difference between the model’s prediction and the actual value (y’s) is the residual-error term
(𝜖’s).

(S1-6) are nested within different classrooms (C1-3) with no student belonging to multiple classrooms.
As seen in the cross tabulation, each student has only one observation in only one of the classrooms.
Figure 3B shows an example of an ambiguously coded nested factor. The same two levels of student
(S1-2) show up at each level of each level of classroom (C1-3). However, student S1 in class C1 is not
the same student as S1 in C2 or S1 in C3. Although it is best practice to code unambiguously, to make
the nesting clear, we can concatenate the classroom and student labels (classroom:student) to get a
unique identifier (e.g., C1:S2). The cross tabulation then shows the correct nesting: one observation from
each student in only one class. If we did not concatenate these labels, we would end up with the wrong
cross tabulation with 3-observations each for S1 and S2, one in each classroom.

Crossed refers to situations when different levels of one factor are represented at different levels of another
factor. Two variables are said to be fully crossed if all levels of one factor are represented at all levels
of the other factor. For instance, let’s say that two subjects (S1-2) had to provide responses to video
stimuli (V1-3) in our two different conditions: at rest and 1-hr post exercise. Thus, in a balanced design
each subject has two observations for every video, one for each condition. Our focus is on the fixed effect
of condition, but our randomly selected subjects and video stimuli need to be accounted for as random
effects. If there are no missing data, we would get the fully crossed design shown in Figure 2C; each
subject has three observations, one for each video for which a response was measured. If there are some
missing data, these factors might become partially crossed as in Figure 2D (S1 is missing an observation
for V3, S2 is missing an observation for V2).

Using lme4 in R, researchers have several different options for inputting nested and crossed random
effects as illustrated in Code Snippet 3.
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Figure 3. Schematic illustration of nested (A/B) and crossed (C/D) factors with their cross-tabulations
on the right. C1-3 refer to levels of the categorical factor C. S1-2 refer to levels of the categorical factor
S. V1-3 refer to levels of the categorical factor V. In the nested case, we could think about S as students
and C and classrooms (different students are in each classroom). In the crossed case, we have an example
with S as subjects and V as video stimuli that were watched at two different phases of an experiment
(at rest and 1-hr post exercise), yielding two observations for each subject per video (panel C), or one
to two observations if some subjects/videos are missing data (panel D).

Code Snippet 3

# For students nested within classrooms we could use
(1|classroom) + (1|classroom:student)

# Or equivalent short cut using a slash "/":
(1|classroom/student)
# this syntax will work for ambiguous and unambiguous coding, see Figure 2

# If you have **unambiguously** coded nested factors, you can also use:
(1|classroom) + (1|student)

#For fully or partially crossed random effects, you would use:
(1|subject) + (1|video)

If you have ambiguously coded nested factors, that means you would need to specify (1|classroom)
+ (1|classroom:student). Thus, there is a random intercept for each classroom and for each unique
student (classroom:student concatenates the levels of Classroom, n=3, and Student, n=2, making
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6 unique labels). lme4 also provides a shorthand way of representing this using the ’ / ’ operator,
(1|classroom/student). If you have unambiguously coded data, you could instead use (1|classroom)
+ (1|student) and get the same result. This code is equivalent because in unambiguous data, student
has six levels (S1-S6) and in ambiguous data, the concatenation classroom:student also has six levels
(‘C1:S1’ to ‘C3:S2’).

For fully and partially crossed random effects, one would use the syntax (1|subject) + (1|video).
Note that this syntax has the same form as the unambiguously coded nested effects: (1|classroom) +
(1|student). This similarity helps to illustrate that the nesting (or crossing) of the random effect is
not a property of the model, but a property of the experimental design. The model does not actually
“know” which factors are crossed and which are nested, rather it depends on how those data are coded
and selection of the appropriate syntax to suit the experimental design. Critically, a model will likely
converge and produce an output of coefficients with any of these random effects, and no warning that
a user has the wrong random effects. This highlights the importance of researchers thinking critically
about how their data are coded, then selecting the appropriate random-effects syntax.

Longitudinal Designs
Random Slopes and Intercepts
To illustrate some of the modeling concerns with longitudinal data, let us consider the hypothetical study
depicted in Figure 4A. This plot shows data from three different groups of participants who had different
grades of spinal cord injury (high tetraplegia, cervical vertebral levels 1-4; low tetraplegia, cervical
vertebral levels 5-8; or paraplegia, vertebral levels thoracic 1- sacral 5) and reported their functioning
in the activities of daily living at approximately monthly intervals for 1.5 years as they underwent
physical and occupational therapy. Functioning is an umbrella term for how body structures/functions
(e.g., level of spinal cord injury) interact with personal and environmental factors (e.g., accessibility), to
shape activity limitations and participation restrictions (Imrie, 2004; Üstun et al., 2003). Functioning
in this case is the opposite of disability. For ease of interpretation, we constructed a fictitious measure
of functioning on which scores range from 0 (very high disability) to 100 (very high function) and
has interval/ratio properties. (Health science researchers might be more familiar with this construct
as “independence”, but we use “functioning” to avoid confusion with the statistical meaning of
independence.)

As shown in Figure 4A, these data will likely violate the assumptions of the ordinary least squares
regression model in which errors are assumed to be independent and identically distributed. This violation
can be seen most clearly when we consider that these residuals belong not only to each time point but
are also unique to each participant. Consider the lowest scoring participant in the C1-4 group in the
left panel of Figure 4A. In a very simple model predicting the mean value for everyone (i.e., intercept
only model), this participant is going to have negative residuals (i.e., the difference between the model’s
predictions and the observed value). In contrast, a high scoring participant will have mostly positive
residuals. The exact value of the residuals will depend on the model, but in general we have two sources
of dependence (scores from the same person tend to be more similar and scores from neighboring time
points tend to be more similar) that will lead to correlations in the residuals (negatives with negatives,
positives with positives), violating the assumption of independence. Violating this assumption is not
trivial and can lead to considerable bias in the results of hypothesis tests (Dunlop, 1994; Sainani, 2010).

To account for this statistical dependence, the first step is to recognize that time points (time) are nested
within subjects (subject) in this design. To do this, we can add a random intercept of subject to our
model, as shown mathematically,

Equation 2A
𝑦𝑖𝑗 = 𝛽0 + 𝛾0𝑖 + 𝜖𝑖𝑗

where:
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Figure 4. (A) Hypothetical functioning scores by time from admission for three different groups of
participants with spinal cord injury. (B) Predicted values from a random-intercepts model (shown as black
lines) plotted over the data for the first five participants. (C) Predicted values from a linear random-
slopes model (shown as red lines) plotted over the data for the first five participants. (D) Predicted
values from a quadratic random-slopes model (shown as blue lines) plotted over the data for the first five
participants.

Equation 2B
𝛾0𝑖 ∼ 𝑁(0, 𝜎2

0)

or programmatically:

Code Snippet 4

raneff_int <- lmer(functioning~
# Fixed effects
1+
# Random effects
(1| subject),
data=DATA, REML=FALSE)

The predictions of this random-intercepts model are shown in Figure 4B for the first five subjects. Each
subject gets their own unique intercept (𝛽0 + 𝛾0𝑖), but there are large residuals not explained by the
model (𝜖𝑖𝑗). These residuals are the difference between each dot (real data) and the line (model estimate)
in Figure 4B. By adding additional fixed and random effects to the model, we can reduce error at the
level of the participant (i’s) and each time point (j’s).
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To improve this model, we can estimate a unique trajectory for each subject by adding a fixed and
random effect of time. This is often referred to as a random-slopes model, shown mathematically:

Equation 3A
𝑦𝑖𝑗 = 𝛽0 + 𝛽1 ⋅ (𝑡𝑖𝑚𝑒𝑖𝑗) + 𝛾0𝑖 + 𝛾1𝑖 ⋅ (𝑡𝑖𝑚𝑒𝑖𝑗) + 𝜖𝑖𝑗

where:

Equation 3B

[𝛾0𝑖
𝛾1𝑖

] = 𝑁 [0
0] , [ 𝜎2

0 𝜎01
𝜎01 𝜎2

1
]

Code Snippet 5

raneff_lin_slope <- lmer(functioning~
# Fixed effects
1+time+
# Random effects
(1+time| subject),
data=DATA, REML=FALSE)

The predictions of this linear random-slopes model can be seen in Figure 4C. Now, not only does each
subject have a unique intercept (𝛽0 + 𝛾0𝑖), but also a unique slope (𝛽1 + 𝛾1𝑖), which greatly reduces the
amount of residual error (𝜖𝑖𝑗). Note also that one does not need to add these fixed and random effects
in one step (Long, 2012; Raudenbush & Bryk, 2002; Singer & Willett, 2003). A fixed-effect could be
added alone, which assumes that all participants changed at about the same rate, or a random-effect
could be added alone, but that would assume the average effect of time is 0 across subjects. Importantly,
having random-intercepts and random-slopes in the model also means that we must account for their
covariance (𝜎01 in Eq. 3B). In applied modeling, it is common to find that individual differences in
slopes and intercepts will be correlated: either positively because individuals with higher intercepts will
show greater change over time (i.e., “the rich get richer”) or negatively correlated because individuals
with lower intercepts will show greater change over time (i.e., “more room to grow” due to floor/ceiling
effects).

Finally, we might want to account for the nonlinearity that we observe in the data. An intuitive way to
account for this nonlinearity that is a direct extension of the linear model is to add a quadratic effect of
time (i.e., time^2) to the model. Adding both a fixed- and random-quadratic effect of time yields:

Equation 4A
𝑦𝑖𝑗 = 𝛽0 + 𝛽1 ⋅ (𝑡𝑖𝑚𝑒𝑖𝑗) + 𝛽2 ⋅ (𝑡𝑖𝑚𝑒2

𝑖𝑗) + 𝛾0𝑖 + 𝛾1𝑖 ⋅ (𝑡𝑖𝑚𝑒𝑖𝑗) + 𝛾2𝑖 ⋅ (𝑡𝑖𝑚𝑒2
𝑖𝑗) + 𝜖𝑖𝑗

where:

Equation 4B

⎡⎢
⎣

𝛾0𝑖
𝛾1𝑖
𝛾2𝑖

⎤⎥
⎦

= 𝑁 ⎡⎢
⎣

0
0
0
⎤⎥
⎦

, ⎡⎢
⎣

𝜎2
0 𝜎01 𝜎02

𝜎01 𝜎2
1 𝜎12

𝜎02 𝜎12 𝜎2
2

⎤⎥
⎦

or programmatically:
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Code Snippet 6

raneff_quad_slope <- lmer(functioning~
# Fixed effects
1+time+I(time^2)+
# Random effects
(1+time+I(time^2)| subject),
data=DATA, REML=FALSE)

In this model, as shown in Figure 4D, each participant not only has a unique starting point (the random
intercept) and a unique initial slope at the intercept (the random linear slope), but also a unique curvature
as the trajectory changes over time (the random quadratic slope).

Importantly, however, our model becomes much more complicated as we add random-slope parameters.
Note that the addition of quadratic random-slope parameter did not merely add one parameter to our
model, it actually added three: one for the variance of the quadratic slope (𝜎2

2), one for the covariance
of intercept and the quadratic slope (𝜎02), and one for the covariance of the linear and quadratic slopes
(𝜎12), as shown in Eq. 4B. Thus, adding fixed- and random-effects of polynomials can improve the fit
of our model, but we need to be thoughtful when doing so. Additionally, researchers need to consider
the centering of the time variable when adding polynomials to the model. If time is centered on the first
observation (i.e., time = 0 reflects the first observation) then higher polynomials will often be highly
correlated, which can create convergence issues for the model. For detailed accounts of how to build these
polynomial models, we refer readers to more thorough sources that explain how to interpret these effects,
test the variance explained by each random-effect, and compare models with different random-effects in
order to choose the most parsimonious model that still fits the data appropriately (Long, 2012; Singer
& Willett, 2003).

Random-Effects in Non-Linear Models
The quadratic random slopes model above is what we refer to as a curvilinear model. That is, the model
ultimately predicts a nonlinear trajectory for each person, but the model itself is linear in its components:
𝛽0 is simply added to 𝛽1 ⋅ 𝑡𝑖𝑚𝑒𝑖 and added to 𝛽2 ⋅ 𝑡𝑖𝑚𝑒2

𝑖 as in Eq. 4A. Forcing this nonlinearity via
polynomials has strengths and weaknesses. Strengths include the ease of interpreting polynomials (e.g.,
the average reader can more easily conceive of time^2 compared to the log of time or time exponentiated)
and they often correspond to hypotheses that researchers might have (e.g., the typical researcher might
be interested in any evidence of curvature, rather than a specific power law or exponential law). However,
a major weakness is that few biological or social systems follow a quadratic function (i.e., being u- or
n-shaped and symmetric about a single inflection point). For instance, in Figure 4D, it is likely that
participants were approaching an asymptote that could be better captured by a truly nonlinear model
such as an exponential or logistic model.

A detailed discussion of nonlinear models lies outside of our focus on random effects, but see Chapter 6
of Singer & Willett (2003), and Pinheiro & Bates (2006). To summarize however, (1) regardless of the
form the nonlinear model takes, there is the possibility to include random effects for each parameter, and
that (2) adding random effects can often lead to issues of over-fitting, so the random effects included in
the final model should be justified through a combination of theoretical rationale and empirical model
fit.

Here, we present an illustrative example of a negative exponential model. First, let us consider a three-
parameter exponential function:

Equation 5A
𝑦𝑖𝑗 = [𝛽0 + 𝛾0𝑖] + [𝛽1 + 𝛾1𝑖] ⋅ 𝑒−(𝛽2+𝛾2𝑖)⋅𝑡𝑖𝑚𝑒𝑖𝑗 + 𝜖𝑖𝑗
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where:

Equation 5B

⎡⎢
⎣

𝛾0𝑖
𝛾1𝑖
𝛾2𝑖

⎤⎥
⎦

= 𝑁 ⎡⎢
⎣

0
0
0
⎤⎥
⎦

, ⎡⎢
⎣

𝜎2
0 𝜎01 𝜎02

𝜎01 𝜎2
1 𝜎12

𝜎02 𝜎12 𝜎2
2

⎤⎥
⎦

Our model now consists of fixed effects, 𝛽0,𝛽1, and 𝛽2, which apply to the whole sample, shown in Figure
5A. However, we also have unique asymptotes (𝛽0 + 𝛾0𝑖), distance to the psuedo-intercept (𝛽1 + 𝛾1𝑖),
and rate parameters (𝛽2 + 𝛾2𝑖) for each subject which are the sum of the fixed effect and the random
deviate for that subject. These coefficients are shown for the first four subjects in Figure 5B.

Figure 5. (A) Modeling the same hypothetical spinal cord injury data using a negative exponential
function. Grey lines show the data for individual subjects. The black line shows the best fitting negative
exponential model, with the fixed effects displayed in the panel. (B) Individual data (as points) and
estimated trajectories (as purple lines) for the first four subjects. Equations show the coefficients for
each participant (the group-level fixed effect from A, plus the random deviate for each participant).

Programmatically, we can also see how this model would be fit using nlme (Pinheiro et al., 2022) in Code
Snippet 7. A worked example of this non-linear model is provided in the online repository (as there are
some important programming considerations for nlme versus lme4).

Code Snippet 7

set.seed(100)
neg_exp_rand_mod <- nlme(functioning ~ b_0i +

(b_1i)*(exp(b_2i * time)),
data = DATA,
fixed = b_0i + b_1i + b_2i ~ 1,
random = list(b_0i ~ 1, b_1i ~ 1, b_2i ~1),
groups = ~ subject,
start = c(80, -70, -1),
na.action = na.omit)

Repeated Measures Factorial Designs
In this section, we will consider situations in which we have categorical repeated measures, not continuous
longitudinal data. For instance, a researcher might have a design with two within-subject factors
of condition (conditions of rest, immediately following exercise, and following a 30-min delay) and
altitude (laboratory simulated low- versus high-altitude environments). Although these measurements
were taken at different times of day, a continuous measure of time is not what we want to model.
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Instead, we want to model the categorical difference between the two different sets of repeated measures:
condition and altitude as shown in Figure 6A. Researchers who use these types of within-subject designs
have historically analyzed their data using repeated-measures ANOVA, in which all factors vary within
a subject. In our experience, many researchers want to apply the same conceptual analysis but utilize
some of the strengths of a mixed-effect model (e.g., avoiding listwise deletion of missing data). But what
is the appropriate random-effects structure that will make the model analogous to the repeated measures
ANOVA? Consider five different options in Code Snippet 8:

Code Snippet 8

# Head of the data file showing the first 12 observations (subject S1 and S2)

subject altitude condition heart_rate
1 S1 low rest 47
2 S1 low imm 63
3 S1 low delay 48
4 S1 high rest 54
5 S1 high imm 64
6 S1 high delay 62
7 S2 low rest 62
8 S2 low imm 74
9 S2 low delay 60
10 S2 high rest 65
11 S2 high imm 80
12 S2 high delay 70
# …

# Option A: Random Intercept of Subject Only
heart_rate ~ 1 + condition*altitude +

(1|subject)

# Option B: Random Intercepts for All Factors
heart_rate ~ 1 + condition*altitude +

(1|subject)+
(1|condition)+
(1|altitude)

# Option C: Random Intercepts of Subject:Repeated Measures
heart_rate ~ 1 + condition*altitude +

(1|subject) +
(1|subject:condition) +
(1|subject:altitude)

# Option D: Random slopes of condition and altitude within each subject
heart_rate ~ 1 + condition*altitude +

(1+condition+altitude|subject)

# Option E: Random slopes including the interaction term
heart_rate ~ 1 + condition*altitude +

(condition*altitude|subject)
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When we analyze these data using a repeated measures ANOVA, we obtain main effects of Altitude,
F(1,9) = 58.36, Condition, F(2,18)=142.15, and the Altitude × Condition interaction, F(2,18)=8.63. We
can use these values as a benchmark to evaluate the performance of our mixed-effect models. Using these
values as our “gold standard” assumes that the factorial ANOVA is the model that researchers want given
their design. We acknowledge that this may not always be the case, but we think it is generally best to
choose random effects based on the study design and given that most researchers would analyze data
from this study with a two-way repeated-measures ANOVA, it is reasonable to use that benchmark.

Before we can evaluate these different random effects structures, it is important to briefly explain
two different methods of estimation: Maximum Likelihood (ML) and Restricted Maximum Likelihood
(REML). Without getting into the details of how these estimators actually work (Bates, Machler, et al.,
2015; Pinheiro & Bates, 2006; Singer & Willett, 2003) a key difference is that ML will base estimates on
all of the available information (i.e., fixed and random effects) but does this as an iterative procedure.
As a conceptual approximation, for each iteration of ML the fixed components are estimated first,
and then random components estimated second given those fixed effects. Mathematically, this happens
simultaneously, but conceptually we can think about the fixed effects being needed first, as the sample
mean needs to be calculated to then calculate the sample variance. As with the calculation of the sample
variance, this means that variances in ML tend to be under-estimated. However, this bias in ML versus
REML should only substantially affect the estimation of the variance when the number of observations,
𝑛, is small relative to the parameters being estimated, 𝑝. Readers are likely familiar with this issue when
calculating the variance of a sample, where we divide the sum of squared errors by 𝑛 − 1 (analogous to
REML) rather than simply n (analogous to ML). Thus, the de-biasing effect of dividing by 𝑛 − 𝑝 relative
to just dividing by n depends on the values of both 𝑛 and 𝑝. When the number of observations is much
larger than the number of parameters (𝑛 >> 𝑝), then the choice between REML and ML will usually
have a trivial effect on the variance components. Importantly, however, REML does not correct this bias
simply by changing the denominator of the variance components, but by using a fundamentally different
algorithm for estimation.

In REML, the outcome is effectively transformed into residuals, variance components are then iteratively
estimated, and then the fixed effects are estimated using generalized least squares (for an accessible
discussion see McNeish (2017)). Thus, unlike ML where we simultaneously estimate the fixed and random
effects in every iteration, with REML the fixed effects can essentially be treated as 0 at first because we
are estimating residuals, and partitioning that variance based on the best fitting values of the random
effects. In the final step of REML, we thus already have a variance/covariance matrix for the random
effects and can estimate the best fitting fixed effects given that matrix.
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These computational differences mean that REML and ML have complementary strengths and weakness.
For instance, if you wanted to compare models with different fixed effects to ascertain the best fitting
model, then you need to use ML because it is agnostic to the degrees of freedom lost to the different fixed
effects in the different models. However, ML is also prone to under-estimate the variance components,
especially in small samples. Thus, if there is no model comparison (e.g., you are a fitting a single mixed
model with random effects determined by the design) or if you are comparing models with identical fixed
effects (e.g., trying to determine only the preferred random effect structure), then REML will lead to
less biased estimation of the variance components than ML.

Figure 6. (A) Data from our hypothetical experiment in which the same subjects had their heart rate
measured at simulated low and high altitude in the lab at three different time points: at rest, immediately
following exercise, and following a 1-hr delay post exercise. (B) A truncated design matrix for the random-
effects structure of the model. The first 8 observations (6 belonging to subject S1, 2 to subject S2) are
shown in rows and the ‘Subject:Factor’ intercepts from the mixed model are shown in columns.
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Table 1. Summary model output for a factorial repeated measures ANOVA and mixed-effects models
using five different random-effects and two different methods of estimation (ML versus REML).

Main Effect of
Altitude

Main Effect of
Condition

Altitude x Condition
Interaction

(df1, df2) F-value (df1, df2) F-value (df1, df2) F-value
Repeated Measures ANOVA
ANOVA,
Type III
sums of
squares

(1, 9) 58.36 (2, 18) 142.15 (2, 18) 8.63

Random Effects - REML
Option A (1, 45) 43.13 (2, 45) 199.25 (2, 45) 6.29
Option B (1, 45) 0.5 (2, 45) 1.52 (2, 45) 6.29
Option C (1, 9) 58.35 (2, 18) 142.15 (2, 18) 8.63
Option DA (1, 12) 43.88 (2, 9) 123.51 (2, 27) 10.51
Option EB N/A N/A N/A N/A N/A N/A
Random Effects - ML
Option A (1, 50) 47.92 (2, 50) 221.39 (2, 50) 6.99
Option BC (1,50) 47.92 (2, 50) 221.39 (2, 50) 6.99
Option C (1, 10) 64.84 (2, 20) 157.95 (2, 20) 9.59
Option DA (1, 13) 48.77 (2, 10) 137.26 (2, 30) 11.68
Option EB N/A N/A N/A N/A N/A N/A
Notes: Readers can see all the underlying code, including the standard ANOVA
functions in the online repository. Df1 refers to the numerator degrees of
freedom and df2 refers to the denominator degrees of freedom for the calculation
of the F-statistic. REML = Restricted maximum likelihood estimation; ML =
Maximum Likelihood estimation.
Areturns warning ”boundary (singular) fit: see help(’isSingular’)”, correlations
between random-effects approach 1, but there is no zero variance for every
random effect.
BLeads to an error, ”Error: number of observations (=60) <= number of
random effects (=60) for term (condition * altitude | subject); the
random-effects parameters and the residual variance (or scale parameter) are
probably unidentifiable”. Without replicates, this model is over-specified and
cannot be fit to these data.
Creturns warning ”boundary (singular) fit: see help(’isSingular’)”, the variance
for (1|altitude) and (1|condition) both go to zero, effectively leaving this the
same as Option A when fit using maximum likelihood.
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Option A: Random Intercept of Subject Only – A Poor Choice.
In our experience, many researchers select Option A, including only a random intercept of subject,
(1|subject). Including a random intercept for each subject is necessary but not sufficient to account
for all the statistical dependencies in this within-subject design. This can be seen in Table 1, where we
contrast the denominator degrees of freedom and F-values from a mixed-factorial ANOVA (Lawrence,
2016) and the five different mixed-effect models. Option A leads to greatly inflated denominator degrees
of freedom for each of the effects; the denominator degrees of freedom are all 45, much larger than the
corresponding 9 or 18 degrees of freedom in the repeated measures ANOVA. This spuriously increases
statistical power (note the larger F-values for each test), in a loose sense making it seem as though
we have more independent pieces of data than we do. Inspecting the degrees of freedom helps to
quantify the conceptual problem with this random-effects structure: there a several “strata” in the data
(Venables & Ripley, 1997) at which we could look at the effect of altitude and condition. With N=60
observations and only a random intercept of subject, we have essentially divided the data into two strata:
a between subjects’ stratum (n=10, df=9 after the grand mean is estimated) and within subjects’ stratum
(df=50 after between subject variance is removed). However, not all observations within a subject are
independent of each other, as each subject has multiple observations at each altitude and condition.

Option B: Random Intercepts for All Factors – A Very Bad Choice.
To account for the fact that observations are clustered within subjects, altitudes, and conditions, we
have often seen authors use a random-effects structure like Option B, treating altitude and condition
as random effects. At first, these three random intercepts might seem reasonable, but there is a major
conceptual flaw with this model: Our observations are not crossed by altitude and condition overall,
they are only crossed by altitude and condition within each subject. The correct way to handle this is
by nesting altitude and condition within each subject and accounting for those crossed factors at the
within-subject level, which is precisely what we do in Option C. Before discussing that structure, however,
let us dwell on Option B as an example of what not to do. As we will see, it is bad practice to enter a
variable as both a fixed and random effect, because it is statistically non-sensical.

When estimated with REML, the main-effects for altitude and condition all but disappear with F(1,
45)=0.50 and F(2,45)=1.52, respectively. These F-values are greatly reduced because we have pulled out
the variance due to altitude and condition in our random intercepts prior to the estimation of the fixed
effects, leaving a trivial amount of variation to be explained. Recall that for REML, variance components
are estimated from a residualized outcome, and fixed effects are then estimated using generalized least
squares given the matrix of random effects. The interaction term remains similar to what we saw with
Option A, F(2,45)=6.29, because that variance is not accounted for by the random intercepts.

When estimated with ML, the results of Option B are identical to Option A because now the fixed effects
are iteratively estimated with the redundant random effects, which leaves no variance to be explained
by the random intercepts of altitude and condition. The variance for both random intercepts is now
estimated to be 0 (see footnotes for Table 1), and we are effectively left with a random intercept of
subject.

These wildly varying estimates for altitude and condition help to illustrate how our different estimators
work (i.e., REML vs. ML) and hopefully illustrate how incorrect Option B is. It is non-sensical to treat
altitude as both a fixed effect and random effect, it needs to be one or the other. Note, how this is
also different from longitudinal models where we estimated a fixed effect of time, but also had a random
slope for time within each subject (i.e., (1+time|subject)). It is perfectly acceptable to estimate a fixed
effect at the group-level, while accounting for individual differences in an effect through the random
effects, discussed in Options C-E below.

Option C: Random Intercepts for Subject:Repeated Measures – A Good
Choice.
Random effects Option C is a very good choice to appropriately account for the statistical dependencies in
these data. In that model, the degrees of freedom and the F-values match the repeated measures ANOVA
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exactly using REML. These outputs match because not only are we accounting for the fact that data-
points come from the same subject, (1|subject), but we also account for the fact that each subject can
respond differently to each altitude, (1|subject:altitude), and each condition, (1|subject:condition).
As shown in a truncated design matrix in Figure 6B, having a unique intercept for each subject:factor
accounts for the fact that altitude and condition are crossed factors, within each subject. We have thus
set up appropriate strata in the data at which we can evaluate our fixed effects (Venables & Ripley,
1997).

Note also that we cannot include an intercept of (1|subject:condition:altitude) because that would
amount to a random deviate for every observation, leaving no residual error (i.e., such a three-way
random intercept is confounded with the error term when we only have one observation person per
condition, and lme4 would return an error).

As shown in Table 1, if we use ML instead of REML the results no longer match the ANOVA precisely.
The degrees of freedom are slightly increased, as would expected given the differences in estimation, and
this in turn leads to slightly increased F-values. Thus, the choice of estimation method will have an effect
when it comes to statistical inference, but if we fit these models in a large data set (where 𝑛 >> 𝑝), the
practical difference between REML and ML would be small.

It is important to note that this random-intercepts method gets more complicated with more within-
subject factors. For instance, if we were to add a third within-subject factor to a fully factorial
design (call it W3), then not only would this add an additional fixed effect, but it adds considerable
statistical dependency that needs to be accounted for in the random effects. In that situation,
observations come not only from each subject in each condition, but from each subject in each
combination of the conditions, so we would need to add intercepts to account for the two-way
interactions within each subject (e.g.,(1|subject:condition:altitude) + (1|subject:altitude:W3)
+ (1|subject:condition:W3)). It is also important to note that our heuristic for the degrees of freedom
may start to breakdown in more complex designs and although the degrees of freedom will be similar to
the ANOVA, they will no longer match exactly (e.g., with sparse random-effects when there may only
be two-levels of a factor (Venables & Ripley, 1997)). To save on space, we present a detailed example of
a three-way within-subject design in the online supplement.

Option D: Random Slopes of Condition and Altitude within in Subject –
Also a Good Choice.
Another reasonable alternative would be to include random slopes for each factor within each subject
as in Option D. Conceptually, this model accounts for the within-subjects nature of the design similar
to Option C, but it approaches the problem in a very different way and with more complexity that may
not always be desirable. First, recall that when fitting random slopes, we do not only estimate their
variance, but also their covariance. This allows us to account for potential correlations between the effect
of altitude and condition across subjects, which is good, but increases the number of parameters being
estimated, which is potentially problematic.

To simplify the model, one could also constrain the random slopes to be independent (e.g., using “||”
in place of “|” in lme4 syntax, and see Frossard & Renaud (2019)). However, one would still run into a
second issue which is that random slopes are actually a series of contrasts for categorical factors. That
is, for altitude we only have two levels and therefore we need only one random slope to capture that
difference. For condition we have three levels and therefore two random slopes are needed, which would
also add more covariances if the model is not constrained. As the number of levels of the categorical
factor/s increases, the model becomes substantially more complicated.

Third, and finally, when using this random-slopes approach, the user needs to cognizant of what kind
of contrasts are being used (as with centering of continuous variables). By default, R will use treatment
coding with the first level, alpha-numerically, treated as the reference group, but this may not always
be desirable and will affect the estimates and interpretation of the model, particularly when interactions
are present.
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Option E: Random slopes including the interaction term – Only if you have
replicates!
Estimating the variance around our effects is a very useful step towards understanding individual
differences (e.g., how much does the effect of altitude differ between people?), so the random slopes
structure in Option D is appealing. Ideally, we would like to take this a step further and get an estimate
of how the interaction between altitude and condition differs between people as well, so we can add the
random slopes that capture that interaction in Option E. However, we cannot actually estimate this
model given the current data. With only one observation for each subject in each condition, if we try to
fit a unique three-way interaction for every subject, we will have perfect prediction and no residual error
(as with a random intercept of (1|subject:condition:altitude)). This can be seen in the footnotes
under Table 1, we only have 60 observations and if we want random slopes for each factor and their
interaction, then we end up with 60 random effects. As the error message says, “Without replicates, this
model is over-specified and cannot be fit to these data”.

Replicates, as the name implies, are repeated observations at the same level of the data. For instance,
assume that rather than one average heart rate for each subject in each condition, we ran our subjects
through our exercise protocol on two different occasions with a sufficient washout period in between
exposures to reduce order effects. We would now have two observations for each subject in each
combination of altitude and condition, yielding 120 observations. Having only two observations per
person may not be enough to get very stable estimates of the variance for these within-subject effects,
but it would give us the observations necessary to estimate a model using Option E. Thus, having
replicates is often very desirable but comes with increased complexity and often implicit assumptions
about which an author might not be aware. For instance, let’s be generous and say that I have 10
observations for every combination of altitude and exercise. I could estimate a model using Option E,
but that would assume that all 10 replicates are independent of each other. Depending on how those
observations were obtained, independence might not be a tenable assumption. For instance, there are
likely temporal order effects with neighboring observations being more similar. As a result, our model
might need to become more complex, for instance estimating a covariance structure for the residuals
rather than assuming that all errors are independent (Pinheiro et al., 2022; Pinheiro & Bates, 2006).

Designs with Multiple Sources of Variance
A major strength of mixed-effect models over traditional ANOVA is their ability to handle different
sources of variance simultaneously. We can see these different sources of variance when we have multiple
factors that are random samples. For instance, this can happen when we have multiple levels of nesting,
such as time within patients and patients within hospitals. That is, we want to generalize from our sample
of patients and our sample of hospitals back out to a theoretical population of patients and population of
hospitals, but we also need to account for the statistical dependence of patients from the same hospital.
This sort of hierarchical nesting is why many mixed-effect models are referred to as “multi-level models”
(MLM’s Snijders & Bosker (2012)) or “hierarchical linear models” (HLM’s Raudenbush & Bryk (2002)).
In the Variation in Multiple Nested Factors section below, we illustrate this kind of hierarchical nesting.
We use the same hypothetical spinal cord injury data from the previous example of longitudinal data
analysis. However, we now pretend that these patients were recruited and assessed at different study
sites; so, we have time within subjects and subjects within sites. See Figure 7A.

We can also see different sources of variation when participants are repeatedly exposed to stimuli. In
speech pathology and audiology, the stimuli might be a series of words that the participant is hearing
or saying. The words are a random sample of possible words and therefore we want to account for the
variance in our sample of words in the same way we account for the variance in our sample of subjects.
In the Variation in Multiple Crossed Factors section below, we will use a linguistic example from speech
recognition (Brown & Strand, 2019). These response time data have been modified from the original
data for didactic purposes (Brown, 2021) and illustrate how we can account for variation due to both
our sample of subjects and the sample of words. See Figure 7B/C.

In that experiment, participants listened to words in both an audio only modality in which a speaker was
heard but not seen, and in an audiovisual modality in which the speaker was both seen and heard. Across
all words were presented in both modalities, but each word was presented in only one modality for a
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given subject. The dependent variable was subjects’ response time in a secondary task in which they had
to decide if a tactile stimulus was presented for a short, moderate, or long duration. The response on this
secondary task is thus an index of the cognitive demand of processing the word. If the response time is
faster, we can infer that the primary task required fewer cognitive resources. If the response time is slower,
we can infer that the primary task required more cognitive resources. The researchers hypothesized that
participants would be slower to respond in the audiovisual condition because participants would be
processing both the audio and visual information.

Figure 7. (A) Data from the hypothetical spinal cord injury study. Functioning in daily life is shown
by time since admission and the study site at which the data were collected. Different study sites are
shown in the fill colors, lines connect data points for individual subjects. (B/C) Data from the adapted
linguistics example. Panel B shows response times as a function of the first ten words in the stimulus list
(out of 543 total words). Points show the response time for individual subjects. Panel C shows response
times as a function of the first ten subjects (out of 53 total subjects). Points show response times for
individual words. In both B and C, points are color coded by the modality in which they were presented
audio only, or in an audiovisual modality in which the speaker was seen.

Variation in Multiple Nested Factors (e.g., Subjects within Study Sites)
Returning to our hypothetical spinal cord injury data, in Figure 7A we can see multiple sources of
statistical dependency. Time points are nested within individual subjects, but now we also have subjects
nested within different research sites (A-D). We can account for this additional level of nesting in our R
code by using a random intercept of study site. We also include a fixed effect of spinal cord injury grade
(C1-4, C5-8, T1-S5) and its interactions with time:
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Code Snippet 9

raneff_quad_site<-lmer(functioning~
# Fixed-effects
1+time*grade+I(time^2)*grade+
# Random-effects
(1+time|subject)+(1|site), data=DAT1, REML=FALSE)

Fitting this model yields the random and fixed effects shown in Table 2, and yields the warning message
“boundary (singular) fit: see ?isSingular”. Looking at the random-effects output in Table 2 we
can see why: the variance for the site random-effect is estimated to be zero, which is a “boundary”
because variances can only be between [0, +∞). Correlations are similarly bounded between [−1, +1]. In
this case, it would be reasonable to drop the site random effect from the model, as there is no variance
being reliably explained by the different study sites.

Table 2. Summary of the model output for spinal cord injury data, including a random intercept for the
different study sites.

Random Effects Fixed Effects

Group Name SD r Effect F-Value df1, df2 p-value

Subject Intercept 4.62 Grade 5,073.00 2, 50.7 <0.001

Time 6.93 -0.08 Time 1,450.21 1, 140.4 <0.001

Site Intercept 0.00 Time2 1,104.46 1, 640.4 <0.001

Residual 3.44 Time x Grade 3.83 2, 141.1 0.024

Time2 x
Grade

1.31 2, 640.5 0.271

Note that the number of observations = 720, subjects = 40, and sites = 4.

However, there are a few considerations for dropping this random effect from the model. First, we only
have four study sites in this example, which is very small number of levels for the estimation of a random-
effect (B. Bolker, 2023; Hodges, 2016). If we still wanted to account for differences between sites, we
could include site as a fixed effect. If we include it as a fixed effect, we again see that there is very little
variance explained by study site, F(3, 40.0)=0.97, p=0.414. So, in a practical sense, we can account
for the variation due to study site in either format. Philosophically though, these two approaches are
different. Treating study site as a fixed effect assumes that these are the only study sites in which we are
interested. Treating study site as a random effect assumes sites are a random sample of possible sites. In
either case, we should think about this lack of explained variance as a null result. That is, we have not
proven that there is 0 variation between study sites, we have simply failed to find evidence of a difference
between study sites – and the absence of evidence is not evidence of absence (60).

Variation in Multiple Crossed Factors (e.g., Variation in Subjects and
Stimuli)
In our linguistic example, we must account for the fact we have multiple observations not only for each
participant, but also for each stimulus. Note that unlike the longitudinal data, there is no reliable pattern
to the data within a participant, because the order of the stimuli was randomized for each person. As
such, we can account for this statistical dependence with random intercepts of subject and stimulus,
and a fixed effect of the modality of the stimuli (modality).
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Code Snippet 10

rand01 <- lmer(log(RT)~
# Fixed Effects
1+modality+
# Random Effects
(1|subject)+(1|stimulus),

data=DAT2, REML=TRUE)

As shown in Table 3, there was relatively less variability due to stimuli (SD = 0.017) compared to
subjects (SD=0.152). Accounting for these sources of variation, there was a statistically significant effect
of modality, such that participants were generally slower to respond to the audiovisual stimuli compared
to the audio-only stimuli, b=0.079, F(1,21440)=541.48, p<0.001.

Table 3. Summary of the model output for the linguistic data, including random intercepts of both
participant and stimulus.

Random Effects Fixed Effects

Group Name SD Effect F-Value df1, df2 p-value

Stimulus Intercept 0.02 Modality 541.48 1, 21440 <0.001

Subject Intercept 0.15

Residual 0.25

Note that the number of observations = 21,679, stimuli = 543, and subjects = 53.

However, we should take note of the denominator degrees of freedom for this F-test, which are 21,440. This
makes sense given the large number of observations: 543 stimuli x 53 participants - missing data = 21,679
observations. However, this is much larger than what we would expect from a comparable ANOVA design
if modality had been included as a within-subject factor: 𝑑𝑓2 = (𝑁 − 1)(𝑘 − 1) = (53 − 1)(2 − 1) = 52. The
reason that these degrees of freedom are so much larger is because we have numerous replicates within
each subject. That is, for each subject in each modality, we have multiple observations from several
different stimuli. In this situation, we have a few options. We could aggregate the data down to one
observation for each subject in each modality. This would make our mixed model more like a traditional
repeated measures ANOVA with a within-subject factor of modality. Indeed, if we averaged over stimuli
and then ran the code below, we would obtain a main effect of modality with F(1,52)=45.94, p<0.001.

Code Snippet 11

DAT3 <- DAT2 %>% group_by(subject, modality) %>%
summarize(RT = mean(RT))

agg_mod <- lmer(log(RT)~
# Fixed Effects
1+modality+
# Random Effects
(1|subject),

data=DAT3, REML=TRUE)

However, aggregating over stimuli would remove all the variability due to the individual stimuli and
increase the Type I error rate. Thus, if we want to estimate the variability due to the specific stimuli we
chose, we need to retain the different observations for the different stimuli. Instead of aggregating, we
could retain the random intercept of stimulus, and add a random slope for the modality within each
subject as in Code Snippet 12.



23

Com
m

unicationsin
Kinesiology

–
storkjournals.org

......................................................

Code Snippet 12

rand_slopes <- lmer(log(RT)~
# Fixed Effects
1+modality+
# Random Effects
(1+modality|subject)+(1|stimulus),

data=DAT2, REML=TRUE)

We can see the results from this model in Table 4. By including a random intercept for stimuli and
a random slope for modality within each subject, we can effectively estimate the variance due to the
different stimuli (SD = 0.075) while reducing the degrees of freedom in the F-test, F(1, 51.9)=52.86,
p<0.001. Conceptually, the reason the denominator degrees of freedom have shrunk from 21,440 to 51.9
is because we are no longer treating the modality effect as being estimated from 21,679 data points,
but from 53 observations of the modality effect, one for each participant. Thus, if the model converges,
including the random slope is going to be more appropriate when we have replicates in the data.

Including this random slope also raises an important question, why did we nest the random
slopes within subjects and not within stimuli? That is, why “(1+modality|subject)” and not
“(1+modality|stimulus)”? Or why not both random slopes at once? The answer to this question is
complicated and we direct readers to Frossard & Renaud (2019) for a more detailed explanation of
which random-slopes are allowable. In short, however, we could add a random slope for modality within
stimuli in this example because each stimulus was presented in each modality across subjects (although it
was presented in only one modality for a given subject). As such, modality varies within stimuli much the
same way it varies within subjects, so both random slopes could be included in this example. However,
this more complicated model fails to converge without some tinkering with different optimizers (see
Brown (2021)), so for simplicity we present only the model with “(1+modality|subject)”.

Broadly speaking, a random slope will be allowable if the slope factor varies within a cluster of
observations (i.e., as modality varied within a subjects and within stimuli above). In contrast, a random
slope would not be allowable if the slope factor varies between clusters of observations. For example,
we could have a random slope of “stimulus length” within subjects because all subjects heard words of
various lengths. However, we could not have a random slope of stimulus length within stimuli, because
length varies between stimuli not within stimuli.

Table 4. Summary of the model output for the linguistic data, including random intercepts of both
participant and stimulus, and a random effect of modality within each participant.

Random Effects Fixed Effects

Group Name SD Correlation Effect F-Value df1, df2 p-value

Stimulus Intercept 0.02 Modality 52.86 1, 51.9 <0.001

Subject Intercept 0.16

Modality 0.07 -0.29

Residual 0.24

Note that the number of observations = 21,679, stimuli = 543, and subjects = 53.

Conclusions
First, we would like to thank readers for sticking with us and making it through a rather lengthy
monograph. Second, we hope that this gives readers a solid starting point when thinking about what
random-effects to include in their mixed-effect model given their study design. Longitudinal designs,
factorial repeated measures, and studies with multiple sources of variance all have unique considerations
for how to appropriately deal with statistical dependency in the data. We encourage practitioners to
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work through the vignettes provided in the online repository to get a better practical understanding of
how to build these models in R and how to interpret the results. And finally, we hope readers have an
appreciation for the complexity one faces when using mixed-effect models. The nuances of these modeling
choices are not trivial and can have substantial effects on one’s statistical conclusions.
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