1 2 3 4 5	Motivational Correlates of Exercise Behavior Among College Students
6	Jesenia Nieves and Zachary Zenko*
7 8	Department of Kinesiology
9	Department of Kinesiology
10	California State University, Bakersfield
11	
12	
13	
14 15	
16	
17	
18	
19	
20	*Corresponding Author:
21 22	Zashary Zanka DhD EACSM
22	Zachary Zenko, PhD, FACSM Department of Kinesiology
24	California State University Bakersfield
25	Mail Stop: 22 Education
26	9001 Stockdale Highway
27	Bakersfield, CA 93311
28	E-mail: <u>zzenko@csub.edu</u>
29	Phone: 661-654-2799
30 31	Author Note: Jesenia Nieves completed this work as a graduate student at California State
32	University Bakersfield's Master of Science in Kinesiology program. Zachary Zenko is the
33	Publications Chair of STORK. He was not involved with the peer-review process or any editorial
34	decision making for this manuscript.
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45 46	
40	

47	Abstract
48 49	The purpose of this research was to explore the relations between basic psychological needs
50	satisfaction (autonomy, relatedness, perceived competence), intrinsic motivation, attraction
51	toward exercise, and exercise behavior among college students. In this study, 128 participants
52	(including 91 women and 36 men, mean age: 24 ± 7 years) responded to a questionnaire
53	assessing basic psychological needs satisfaction (autonomy, competence, relatedness), intrinsic
54	motivation, attraction (vs. antipathy) toward exercise, and exercise behavior. Frequency of
55	aerobic exercise, frequency of resistance exercise, and total aerobic exercise behavior are
56	positively associated with autonomy, competence, relatedness, intrinsic motivation, and
57	attraction toward exercise. Three exploratory mediation analyses suggest that attraction (vs.
58	antipathy) toward exercise mediates the relation between intrinsic motivation and exercise
59	behavior. Taken together, these data support and extend previous research on the importance of
60	motivationally relevant variables, including autonomy, competence, relatedness, intrinsic
61	motivation, and affective exercise experiences.
62	Keywords: Exercise behavior, motivation, affective exercise experiences, self-determination
63	theory
64	
65	
66	
67	
68	
69	
70	

71	INTRODUCTION
72	Exercise is vital when it comes to living a healthy life. The development of lifelong
73	exercise behavior has a multitude of health benefits such as improved mental health (Callaghan
74	et al., 2011; Liang et al., 2021; Vancini et al., 2017) and increased cardiovascular fitness (Lavie
75	et al., 2019). Regular physical activity participation is especially important now with the
76	continuous rise of chronic diseases such as coronary heart disease, type 2 diabetes, and some
77	cancers (Lee et al., 2012). Physical activity plays a key role in the development of chronic
78	disease. Yet, data indicate that only one out of every four adults in the US meets combined
79	aerobic and muscle-strengthening activity guidelines, with males achieving the guidelines at
80	higher rates than females (Bennie et al., 2019).
81	When moving from adolescence to early adulthood, students are faced with changes in
82	their physical, social, psychological, and structural domains, which play a role in their perception
83	of barriers and motivational regulation towards physical activity (Diehl et al., 2018). Since
84	physical activity is associated with better health and a decreased risk for chronic illnesses,
85	researchers have recognized the importance of motivating college students to participate and
86	maintain physical activity behavior (Gao et al., 2012). Therefore, there is a need to understand
87	motivational factors that may influence the exercise behavior of college students. To better
88	understand motivational factors, we turn to self-determination theory and affective exercise
89	experiences.
90	Self-Determination Theory
91	Self-Determination theory (SDT) aids in the meaningful explanation and prediction of
92	exercise behavior through the motivation continuum. SDT differentiates between three
93	categories of behavioral regulation which vary in degree of self-determined motivation: intrinsic

94 motivation, extrinsic motivation, and amotivation (Ryan & Deci, 2000; Ntoumanis, 2005).

Motivational Correlates of Exercise

95 Intrinsic motivation is the most self-determined and thus the highest form of autonomous motivation (Wallhead et al., 2014). Intrinsic motivation is apparent when an individual 96 participates in an activity with no need for external motivators and performs for the sake of 97 enjoyment and "because of its inherent satisfactions" (Teixeira et al., 2012, p. 2). Extrinsic 98 motivation is composed of integrated regulation, identified regulation, introjected regulation, and 99 100 external regulation. Each of which has less self-determined motivators and more extrinsic motivators. For instance, integrated regulation is the most self-determined form of extrinsic 101 motivation, but in this type of motivation individuals understand the importance of behaviors or 102 103 internalizes them (Lauderdale et al., 2015). The last motivational regulation is amotivation which 104 occurs when an individual lacks any motivation to perform a behavior. As a behavior becomes more internalized the individual becomes more self-determined. Intrinsic motivation is positively 105 106 associated with exercise self-schema among (Samendinger & Hill, 2021) and exercise behavior college students (Wilson et al., 2004). 107

Basic psychological needs theory is a sub-theory of the SDT in which behaviors are more 108 109 self-determined when innate needs such as autonomy, relatedness, and competence are satisfied. 110 According to self-determination theory, basic psychological needs include autonomy, competence, and relatedness (Ryan & Deci, 2017; Quested et al., 2021). Autonomy occurs when 111 the participant feels their choice is influential, competence focuses on the ability to perform a 112 task, and relatedness is based on the feeling of social relationships (Leyton-Román et al., 2020). 113 114 Therefore, satisfaction of the basic psychological needs influences higher forms of self-115 determined motivation and increases the intention to engage in physical activity (Ntoumanis, 2005). The importance of basic psychological needs for autonomy, competence, and relatedness 116 117 is robust across cultures (Chen et al., 2015). Needs satisfaction has also been linked to positive

118	affective experiences and with higher forms of self-determined motivation (Ntoumanis, 2005;
119	Wilson & Rogers, 2004) and adherence to physical rehabilitation (Chan et al., 2009). Perceived
120	competence appears to be a meaningful predictor of exercise adherence (Vlachopoulos &
121	Neikou, 2007). In sum, needs satisfaction is a key component in motivation and may affect
122	affective experiences, both of which may influence exercise behavior.
123	Meta-analytic evidence has highlighted the meaningful relation between self-
124	determination theory constructs (e.g., satisfaction of basic psychological needs, intrinsic
125	motivation) and exercise behavior (Teixeira et al., 2012). In their review, Rhodes et al. (2019)
126	note that interventions based on self-determination theory demonstrate effectiveness, mixed
127	relations between exercise and autonomy, and weak or nonexistent relations between exercise
128	and relatedness. Overall, the role of the basic psychological and the SDT in exercise behavior is
129	consistent across the literature. Still, there is a need to understand other potential factors that may
130	influence the exercise behavior of college students.
131	Affective Exercise Experiences
400	

132 Maltagliati and colleagues (2022) have highlighted the limitations of focusing exclusively on health benefits associated with exercise and argued for a more central role of affective 133 134 constructs to explain physical activity and exercise behavior. Affective responses experienced during exercise predict future exercise behavior (Rhodes & Kates, 2015). Affective processes are 135 increasingly recognized as a predictor of behavior (Dukes et al., 2021), including physical 136 137 activity and exercise behavior. Ekkekakis (2017) reviewed evidence of affective processes as an important predictor of behavior and conceptualized a dual-process framework that highlights the 138 importance of affective, evolutionarily primitive processes as an influence on behavior, in 139 140 addition to more rational, deliberative processes (e.g., consideration of benefits of an active

Motivational Correlates of Exercise

lifestyle, and consequences of a sedentary lifestyle. The affective-reflective theory of physical
inactivity, a dual-process framework, was formalized by Brand and Ekkekakis (2018). This
theory highlights the importance of automatic affective valuations as well as reflective
evaluations for predicting exercise behavior. This represents an advance upon prior theories used
to predict exercise behavior, which left affective processes noticeably absent (Ekkekakis &
Zenko, 2016).

Affective exercise experiences are defined as "summary valenced designation, ranging 147 from pleasant to unpleasant, that reflects the history of associations between exercise over the 148 149 life course of an individual and the attendant affective responses" (Ekkekakis et al., 2021). 150 Ekkekakis et al. (2021) described attraction-antipathy as a motivational tendency shaped by affective exercise experiences; the researchers found correlations between attraction (vs. 151 152 antipathy) toward exercise and exercise behavior, where greater attraction toward exercise is 153 associated with more exercise behavior (Ekkekakis et al., 2021). In their conceptual model, 154 attraction-antipathy toward exercise was theorized to be influence by core affective exercise 155 experiences (e.g., pleasure or displeasure experienced while exercising); which were in turn influenced by antecedent cognitive appraisals (e.g., feelings of empowerment, interest, 156 157 competence); this conceptual model was supported (Ekkekakis et al., 2021).

Some of the antecedent cognitive appraisals may be related to basic psychological need satisfaction. For example, the subscales of the Affective Exercise Experiences Questionnaire (Ekkekakis et al., 2021) related to showing off and liking group exercise may be related to relatedness and competence may be related to perceived competence. Consistent with Ekkekakis et al. (2021), we view attraction (vs. antipathy) as a construct that is influenced by both reflective, deliberate processes and automatically activated, heuristic processes. Intrinsic

Motivational Correlates of Exercise

164	motivation for exercise may also be related to attraction toward exercise, core affective exercise
165	experiences, and antecedent cognitive appraisals. People with more intrinsic and self-determined
166	motivations may have more attraction toward exercise, and in turn may engage in more exercise
167	behavior. Examination of items measuring each construct suggests that attraction toward exercise
168	(e.g., "Exercise is high on my priority list", "Exercise is a tempting activity", "I would
169	choose exercise over most other activities") is arguably more likely to be influenced by
170	intrinsic motivation (e.g., exercising for fun, enjoying exercise sessions, getting pleasure and
171	satisfaction from exercise) than the other way around. This highlights the possibility that basic
172	psychological needs for exercise and intrinsic motivation have a strong affective component.
173	Thus, there is a need to study attraction toward exercise and intrinsic motivation together.
174	THE CURRENT STUDY
175	The purpose of this research was to add to the literature by further examining the

association between exercise behavior and motivational variables, including autonomy,
competence, relatedness, intrinsic motivation, and attraction (vs. antipathy) toward exercise. In
addition, several exploratory mediation analyses were conducted. These included analyses to
determine whether attraction (vs. antipathy) toward exercise mediated the relation between
intrinsic motivation and exercise behavior.

181 Methods

This study was preregistered (<u>https://aspredicted.org/cw7mu.pdf</u>). Predictor and
exploratory variables included autonomy, relatedness, competence, intrinsic motivation, and
attraction (vs. antipathy) toward exercise. The dependent variable was student exercise behavior.
Exercise behavior was measured in three categories, namely aerobic exercise frequency,
resistance exercise frequency, and total aerobic exercise.

Motivational Correlates of Exercise

187	Measures and Instruments
188	There was one online survey used in this study to collect data using Qualtrics (Provo,
189	UT). The survey included items to assess demographic characteristics (i.e., age, education level,
190	gender, etc.) and four questionnaires. We assessed gender by asking "What is your gender
191	identity?". Response options included "man", "woman", "I prefer not to say", and "I would
192	rather describe".
193 194	Basic Psychological Needs Satisfaction The fulfillment of students' basic psychological needs (i.e., autonomy, competence, and
195	relatedness) in exercise was measured using the Basic Psychological Needs in Exercise Scale
196	(BPNES; Vlachopoulos et al., 2010). This was an 11-question section of the survey that assessed
197	the satisfaction of autonomy (4 items), competence (4 items), and relatedness (3 items). All
198	factors were measured on a 5-point scale ranging from I don't agree at all to I completely agree.
199	A few example items are: "The way I exercise is in agreement with my choices and interests"
200	(autonomy), "I feel exercise is an activity which I do very well" (competence), and "My
201	relationships with the people I exercise with are very friendly" (relatedness). See Vlachopoulos
202	et al. (2010) for evidence of validity. In this study, internal consistency for each subscale was
203	acceptable, as indicated by Cronbach's α : autonomy (α = .866), competence (α = .918), and
204	relatedness (α = .895). Thus, scores were highly reliable for the subscales of basic psychological
205	needs satisfaction.
206 207	Intrinsic Motivation Self-determined, intrinsic motivation was measured using the Behavioral Regulation in
208	Exercise Questionnaire (BREQ-2; Markland & Tobin, 2004). The four items of the intrinsic
209	regulation subscale were used in this analysis. Following the stem, "Why do you engage in
210	exercise?" participants answered items related to intrinsic regulation (e.g., "I exercise because

Motivational Correlates of Exercise

211	it's fun"). Each item is answered on a 5-point scale varying from not true for me to very true for
212	me. Studies have demonstrated the questionnaire to be both valid and reliable to examine college
213	students' motivational regulations in exercise (Lauderdale et al., 2015; Markland & Tobin,
214	2004). In this study, internal consistency of the intrinsic regulation subscale was high ($\alpha = .926$).
215 216	Affective Experiences To measure affective experiences the Affective Exercise Experiences (AFFEXX)
217	Questionnaire was used to assess affective exercise experiences. This scale includes several
218	statements with bipolar answers on each side that are separated by a 7-point response scale. The
219	primary subscale of interest in this study was the attraction-antipathy subscale, which includes
220	items such as "Exercise is something I look forward to" vs. "Exercise is something I dread".
221	Ekkekakis et al. (2021) reported on the validity and reliability of the questionnaire. The attraction
222	(vs. antipathy) subscale demonstrated strong internal consistency in this sample ($\alpha = .899$)
223 224	Exercise Behavior The International Physical Activity Questionnaire Short Form (IPAQ-SF; Craig et al.,
225	2003) was modified to assess exercise behavior. The questionnaire has shown acceptable
226	concurrent validity (Meh et al., 2021). See Craig et al. (2003) for evidence of criterion validity.
227	The questionnaire was modified in this study to focus directly on mode (i.e., aerobic or
228	resistance), frequency, and duration of exercise. This section was composed of questions used to
229	assess aerobic and resistance frequency as well as overall, total aerobic exercise (i.e., "How
230	many minutes of planned, purposeful cardiorespiratory or aerobic exercise have you completed
231	in the last 7 days? Do not count activities such as walking to work or completing household
232	chores"). The response format included an open-ended textbox where participants could enter
233	their response.

234 Aerobic exercise frequency was assessed using the question "In the past 7 days, how many days did you engage in planned, purposeful cardiorespiratory or aerobic exercise? Do not 235 236 count activities such as walking to work or completing household chores." Resistance exercise 237 frequency was assessed with the question "In the past 7 days, how many days did you complete muscle-strengthening activities, such as weightlifting, strength training, or resistance training?" 238 Response options included 0, 1, 2, 3, 4, 5, 6, or 7, corresponding to anywhere from 0 days to 7 239 days of aerobic or resistance exercise. We intended to measure frequency as well as overall 240 behavior (minutes) because motivational variables may differently impact frequency and overall 241 242 behavior. For example, motivational variables may influence choice of whether to exercise today 243 or not (frequency) more than the decision to continue exercising once the task has been initiated 244 (total behavior).

245 Procedure

Institutional Review Board (IRB) approval was obtained from California State University 246 Bakersfield. One modification was approved to increase recruitment rate; this modification 247 included recruitment through social media which allowed for college students of all ages to 248 participate. Data were initially collected in the Fall 2021 semester. Participants were recruited 249 250 from a Hispanic-serving Institution in California. A second modification was made to allow for the recruitment of some additional participants in the Spring 2022 semester. Participants were 251 252 recruited through mass emailing and a recruitment flyer posted on social media (Instagram and 253 Twitter).

Participants clicked on a link to access the informed consent form and the survey. Once
consent was provided, students were prompted with questions on their demographic
characteristics as well as the questions to assess their basic psychological needs, intrinsic

Motivational Correlates of Exercise

257	motivation, attraction (vs. antipathy) toward exercise, and exercise behavior. Upon completion of
258	the survey, participants were redirected to another survey where they provided their email to be
259	compensated with \$5.00 Amazon electronic gift cards.
260	Sample Size Calculation
261	The study was launched with a focus on college students at least 18 years of age. The
262	revised analysis that is presented was not based on that initial power calculation. Based on
263	practical and resource considerations (Lakens, 2022), we aimed to recruit between 120 and 150
264	individuals to balance resource constraints.
265	Preregistration, Data Processing, and Data Availability
266	The preregistration, data, data analysis, and data processing notes are available at
267	https://osf.io/y5guj/. Deviations for preregistration are reported in the discussion.
268	All data were cleaned and analyzed using IBM SPSS version 28 (Armonk, NY), JASP
269	(JASP Team, 2022) and jamovi (The jamovi, 2022). Significance levels were set to $p < .05$.
270	Before beginning data analysis, the data were cleaned and processed. This included the removal
271	of ten responses from people who never completed the consent form (and never provided any
272	additional data), 22 participants who consented but never provided additional data, and 7
273	participants who did not complete the survey. Further, outliers were identified using Tukey's
274	fences and invalid responses were identified, flagged, and removed from relevant analyses and
275	the questionnaire data was appropriately scored. The full notes on the data processing procedure
276	are available at <u>https://osf.io/y5guj/</u> .
277	
278	
279	

280 Final Sample Characteristics

- Data included 128 participants (mean age: 24 ± 7 years). This included 91 women, 36 281 282 men, and 1 participant who preferred not to say their gender. Over half of the sample (56.25%) 283 identified as either Hispanic, Latino, Latina, or Latinx. The sample also included 35 White participants, 17 Asian participants, 11 Black or African American participants, 1 Native 284 285 Hawaiian or Pacific Islander participant, and 3 participants identifying as "Other", which included one "European" and one "Palestinian/Arabic" participant. Finally, most were currently 286 undergraduate students with 91.41% having earned their high school diploma (or equivalent), 287 288 some college, or Associate degree (2-year degree). 11 participants completed their Bachelor degree or Master degree. Ten participants indicated extreme amounts of exercise behavior (more 289 than 433 minutes per week), which was determined using Tukey's fences (IQR * 1.5). These 290 participants were eliminated from further analysis. 291 292 Statistical Analysis *Motivational correlates of exercise behavior* 293
- A series of bivariate correlation analyses were performed to determine the relations between
- 295 motivational variables (autonomy, competence, relatedness, intrinsic motivation, and attraction
- 296 [vs. antipathy] toward exercise) and exercise behavior (frequency of aerobic exercise, total
- 297 aerobic exercise, and frequency of resistance exercise). The assumption of normality was
- violated in multiple cases and thus Spearman's rho is reported for each correlation.
- 299 *Exploratory mediation analyses*
- 300 A series of three exploratory mediation analyses were completed to test whether attraction (vs.
- antipathy) toward exercise mediated the relation between intrinsic motivation and exercise
- behavior. Mediation analyses were performed in jamovi (Gallucci, 2020; jamovi project, 2022; R
- 303 Core Team, 2021; Rosseel, 2019; Soetaert, 2019) with dependent variables including (a)

Motivational Correlates of Exercise

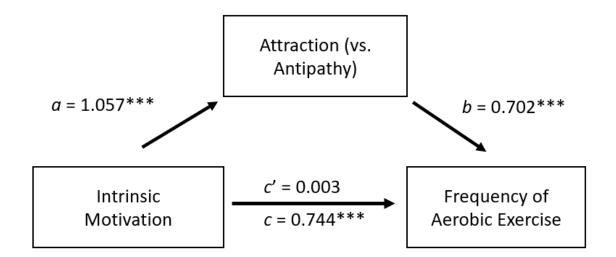
304	frequency of aerobic exercise, (b) total aerobic exercise, and (c) frequency of resistance exercise.
305	For each mediation analysis, 95% confidence intervals were calculated using 5000 bias-corrected
306	bootstrapped samples. If the 95% bootstrap confidence interval of an indirect effect did not
307	include 0, it was considered statistically significant.
308	Results
309	Motivational Correlates of Exercise Behavior
310	Results of the correlation analyses used to determine the relations between motivational
311	variables and exercise behavior are presented in Table 1. Notably, motivational constructs were
312	also consistently correlated with each other (Table 2). Further exploratory correlation analyses
313	revealed a strong affective component of autonomy, competence, and relatedness. Autonomy,
314	competence, and relatedness were each correlated with all of ten subscales of the AFFEXX ($p <$
315	.001), including antecedent appraisals and core affective exercise experiences (Ekkekakis et al.,
316	2021).

317 Table 1. Motivational Correlates of Exercise Behavior

Frequency	Total Aerobic Exercise	Frequency of
of Aerobic		Resistance Exercise
Exercise		
.624***	.436***	.565***
.674***	.471***	.632***
.485***	.385***	.458***
.507***	.379***	.515***
.565***	.383***	.596***
	of Aerobic Exercise .624*** .674*** .485*** .507***	of Aerobic Exercise .624*** .436*** .674*** .471*** .485*** .385*** .507*** .379***

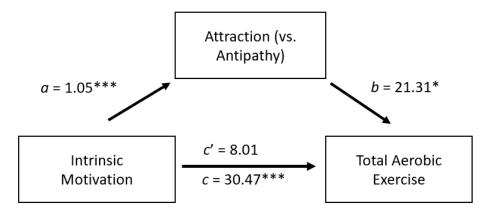
318 *Note:* Spearman's rho reported. *** p < .001, ** p < .01

319


320 Table 2. Correlations Between Motivational Constructs

	Attraction	Intrinsic	Autonomy	Competence	Relatedness
	(vs.	Motivation			
	Antipathy)				
Attraction (vs.		.802***	.665***	.702***	.586***
Antipathy)					
Intrinsic Motivation			.683***	.700***	.549***
Autonomy				.864***	.745***
Competence					.711***
Relatedness					

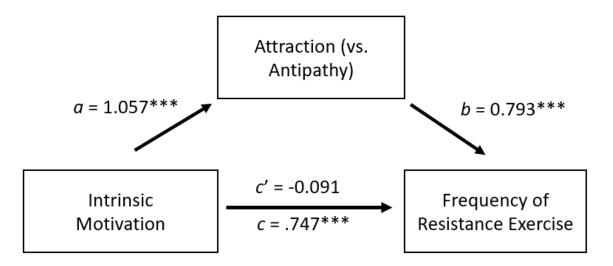
³²¹ *Note:* Spearman's rho reported. *** p < .001, ** p < .01


323 Attraction Toward Exercise as a Mediator

The first mediation model tested whether attraction (vs. antipathy) toward exercise 324 mediated the relation between intrinsic motivation and frequency of aerobic exercise (see Figure 325 326 1). The total effect of intrinsic motivation on the frequency of aerobic exercise was significant (c = 0.744, p < .001, 95% CI: 0.477, 1.012). Participants with greater intrinsic motivation had 327 greater attraction (vs. antipathy) toward exercise (path a = 1.057, p < .001, 95% CI: 0.901, 328 1.213), and participants with greater attraction toward exercise engaged in aerobic exercise more 329 330 frequently (path b = 0.702, p < .001, 95% CI: 0.382, 1.016). A 95% bootstrap confidence interval 331 for the indirect effect (ab = 0.742) based on 5000 bootstrap samples did not contain 0 (0.392, 1.131), indicating that the indirect effect was statistically significant. Intrinsic motivations did 332 333 not have a direct effect on frequency of aerobic exercise when controlling for attraction vs. antipathy (path c' = 0.003, p = .990, -0.449, 0.449). 334

- **Figure 1.** Attraction (vs. Antipathy) toward exercise mediates the relation between intrinsic
- motivation and frequency of aerobic exercise. ***p < .001.

338 The second mediation model tested whether attraction (vs. antipathy) toward exercise mediated the relation between intrinsic motivation and total aerobic exercise (see Figure 2). The 339 total effect of intrinsic motivation on total aerobic exercise was significant (c = 30.47, p < .001, 340 341 95% CI: 14.37, 46.58). Participants with greater intrinsic motivation had greater attraction (vs. antipathy) toward exercise (path a = 1.05, p < .001, 95% CI: 0.90, 1.23), and participants with 342 greater attraction toward exercise engaged in more total aerobic exercise (path b = 21.31, p =343 .044, 95% CI: 0.696, 42.44). A 95% bootstrap confidence interval for the indirect effect (ab =344 22.46) based on 5000 bootstrap samples did not contain 0 (1.14, 46.66), indicating that the 345 346 indirect effect was statistically significant. Intrinsic motivation did not have a direct effect on total aerobic exercise when controlling for attraction vs. antipathy (path c' = 8.01, p = .540, 95% 347 348 CI: -16.78, 34.60).



349

Figure 2. Attraction (vs. Antipathy) toward exercise mediates the relation between intrinsic motivation and total aerobic exercise. ***p < .001, *p < .05.

352

354 Finally, the third mediation model tested whether attraction (vs. antipathy) toward exercise mediated the relation between intrinsic motivation and the frequency of resistance 355 exercise (see Figure 3). The total effect of intrinsic motivation on resistance exercise frequency 356 357 was significant (c = .747, p < .001, 95% CI: 0.483, 1.011). Participants with greater intrinsic motivation had greater attraction (vs. antipathy) toward exercise (path a = 1.057, p < .001, 95% 358 CI: 0.899, 1.209), and participants with greater attraction toward exercise engaged in more 359 frequent resistance exercise (path b = .793, p < .001, 95% CI: 0.494, 1.078). A 95% bootstrap 360 confidence interval for the indirect effect (ab = 0.838) based on 5000 bootstrap samples did not 361 contain 0 (0.515, 1.189), indicating that the indirect effect was statistically significant. Intrinsic 362 motivation did not have a direct effect on the frequency of resistance exercise when controlling 363 for attraction vs. antipathy (path c' = -0.091, p = .656, 95% CI: -0.486, 0.308). 364

365

366 Figure 3. Attraction (vs. Antipathy) toward exercise mediates the relation between intrinsic

367 motivation and the frequency of resistance exercise. ***p < .001.

369	DEVIATIONS FROM PREREGISTRATION
370	Previous researchers have suggested that autonomous motivation consists of both
371	intrinsic regulations and identified regulations, while controlled motivation consists of external
372	regulation and introjected regulation (Hagger et al., 2014; Nurmi et al., 2016; Sebire et al., 2008).
373	We initially used the relative autonomy index. However, following reviewer comments, we
374	chose to use only the intrinsic regulation subscale of the BREQ-2 as an indicator of intrinsic
375	motivation based on arguments against the relative autonomy index (Chemolli & Gagné, 2014).
376	Thus, intrinsic motivation was used instead of autonomous or controlled motivations or the
377	relative autonomy index.
378	This study was initially conceptualized with a focus on gender differences in motivation
379	and physical activity. Following reviewer and editor comments, we removed discussion and
380	analyses focusing on gender. The analysis was simplified by removing gender to determine the
381	correlations between the basic psychological needs (autonomy, competence, and relatedness),
382	intrinsic motivation, attraction (vs. antipathy) toward exercise, and exercise behavior (frequency
383	of aerobic exercise, total aerobic exercise, and frequency of resistance exercise). Although, it
384	was specified that attraction (vs. antipathy) would be used in mediation analyses, details of the
385	mediation analyses were not included (e.g., predictor variables), making it difficult to label the
386	mediation analyses as confirmatory.
387	Following reviewer comments, we simplified analyses here and removed perceived
200	

variety in exercise as a variable. This is partly because of incomplete data and researcher error
related to the perceived variety in exercise questionnaire (we did have an error in the survey)
(Sylvester et al., 2014a, 2014b). Finally, we did not anticipate all of the data cleaning steps noted
in the supplementary material. For example, we did not anticipate that people would respond

with a range for self-reported physical activity (e.g., 6-10 hours), which required manualrecoding.

394	DISCUSSION
395	Autonomy, competence, and relatedness were consistently associated with exercise
396	behavior, whether behavior was quantified as frequency of aerobic exercise, frequency of
397	resistance exercise, or total aerobic exercise behavior. This adds to existing literature, which has
398	shown mixed associations between autonomy and exercise; it also contrasts with prior literature,
399	which has shown weak or nonexistent relations between exercise and relatedness (Rhodes et al.,
400	2019). In this study, relatedness shared about 14.8% to 23.5% of the variance with exercise
401	behavior.
402	Further, intrinsic motivation and attraction (vs. antipathy) toward exercise were
403	consistently associated with exercise behavior. Attraction (vs. antipathy) toward exercise
404	explained about 14.7% of the variance in total aerobic exercise, 31.9% of the variance in the
405	frequency of aerobic exercise, and 35.5% of the variance in the frequency of resistance exercise
406	(see Table 2); this extends findings from Ekkekakis et al. (2021) and provides further evidence
407	that attraction-antipathy is a meaningful and motivationally relevant variable. Given that
408	attraction-antipathy is likely influenced by both automatic and reflective processes (Ekkekakis et
409	al., 2021), including appraisals of exercise (e.g., level of interest or boredom, perceptions of
410	competence or incompetence, liking or disliking group exercise) and core affective experiences
411	(e.g., repeated experiences of pleasure or displeasure felt while exercising), this seems to further
412	support the merits of dual-process theories that recognize the influence of both automatic and
413	reflective processes on exercise behavior (e.g., Brand & Ekkekakis, 2018; Conroy & Berry,

Motivational Correlates of Exercise

414 2017; Ekkekakis & Zenko, 2016). Thus, strategies to enhance attraction toward exercise should
415 be included with behavior change interventions.

416 Following the preregistration, mediation analyses were performed using attraction (vs. 417 antipathy) as a mediator to assess whether this construct mediates the relation between intrinsic motivation and exercise behavior. Our results suggest that attraction (vs. antipathy) mediated the 418 relations between intrinsic motivation and exercise behavior, as indicated by (a) frequency of 419 aerobic exercise, (b) total aerobic exercise, and (c) frequency of resistance exercise. In these 420 421 mediation models, a 1-unit increase in attraction toward exercise was associated with 0.7 422 additional days of aerobic exercise, 0.8 additional days of resistance exercise, and 21 minutes of 423 aerobic exercise. Thus, increasing attraction toward exercise may meaningfully increase the 424 likelihood of achieving physical activity recommendations.

425 Ekkekakis et al. (2021) theorized that attraction-antipathy toward exercise reflects both reflective and automatically activated processes. We suggest that the satisfaction of basic needs 426 427 (i.e., autonomy, competence, and relatedness) may enhance intrinsic motivation, which in turn 428 may enhance attraction toward exercise and ultimately exercise behavior. The data presented here highlight the possibility that attraction-antipathy might be partially influenced by intrinsic 429 motivation regulations, theorized here to be a reflective process (i.e., dependent upon cognitive 430 appraisals). As indicated in our results, intrinsic motivation predicts greater attraction toward 431 exercise, which in turn predicts more frequent aerobic exercise, more total aerobic exercise, and 432 more frequent resistance exercise. This suggests the possibility that satisfying basic 433 psychological needs and enhancing autonomous and self-determined forms of motivation may 434 also increase attraction toward exercise. It should be noted that in this study, intrinsic motivation 435 436 and attraction toward exercise were highly correlated (Spearman's rho = .802, p < .001), which

Motivational Correlates of Exercise

reinforces attraction toward exercise as a highly motivationally relevant variable and may
suggest that intrinsic motivation is driven primarily by affective exercise experiences. Further
researchers should investigate this possibility.

440 Limitations

This study is not without limitations. We mentioned deviations from the preregistration, 441 442 above. In addition, this study was based on cross-sectional data. Using cross-sectional data in mediation analysis has been criticized (Fairchild & McDaniel, 2017). Indeed, the cross-sectional 443 444 data presented here are correlational in nature and "cannot offer insight into directionality of a 445 relation between variables (Fairchild & McDaniel, p. 1265). That said, cross-sectional mediation analyses can still provide meaningful insights (e.g., Bugge et al., 2018), banning cross-sectional 446 447 mediation analyses may hinder "progression of scientific theory" (Disabato, 2016; also see Hayes and Rockwood, 2020), and simply reversing the order of variables in the mediation model 448 is not recommended (Thoemmes, 2015), and thus we are not presenting the mediation models 449 testing whether intrinsic motivation mediates the relation between attraction toward exercise and 450 exercise behavior. We theorize that attraction toward exercise is a direct determinant of exercise 451 behavior, and suggest that intrinsic motivation (i.e., exercising for fun, enjoyment, because 452 453 exercise is pleasurable, and because of pleasure and satisfaction) increases attraction toward 454 exercise. Further, we suggest that satisfying basic psychological needs (i.e., increasing 455 autonomy, competence, and relatedness) may increase intrinsic motivation, and in turn attraction 456 toward exercise. This is supported by further exploratory regression analyses, which indicate that autonomy, competence, and relatedness explain 46.5% of the variance in intrinsic motivation. 457 458 However, more robust data with more complex research designs (e.g., longitudinal studies, 459 randomized controlled trials) are warranted to test these hypotheses.

460	We also recommend that future researchers more specifically assess self-determined
461	motivations (e.g., autonomy, competence, relatedness, intrinsic motivation) as it relates to
462	aerobic exercise and resistance exercise separately, and we appreciate the reviewer for this
463	suggestion. Finally, we recommend that future researchers explore these questions using device-
464	based measures to complement self-reported physical activity.
465	Conclusions
466	Using preregistered measures and methods, further evidence is provided to support the
467	importance of basic psychological needs satisfaction, intrinsic motivation, and attraction (vs.
468	antipathy) toward exercise to understand exercise behavior. We recommend further replication
469	attempts on these results using fully preregistered methods. At present, we recommend that
470	researchers and practitioners continue investigating how to (a) promote psychological needs
471	satisfaction to maximize autonomy, competence, and relatedness, (b) enhance intrinsic
472	motivation, and (c) ensure that affective exercise experiences are positive across the lifespan of
473	exercise so that people have positive associations with exercise, and experience attraction toward
474	exercise behavior.

476	References
477	Bennie, J. A., De Cocker, K., Teychenne, M. J., Brown, W. J., & Biddle, S. J. H. (2019). The
478	epidemiology of aerobic physical activity and muscle-strengthening activity guideline
479	adherence among 383,928 U.S. adults. International Journal of Behavioral Nutrition and
480	Physical Activity, 16, 34. https://doi.org/10.1186/s12966-019-0797-2
481	Brand, R., & Ekkekakis, P. (2018) Affective-Reflective Theory of physical inactivity and
482	exercise. German Journal of Exercise and Sport Research, 48, 48–58.
483	https://doi.org/10.1007/s12662-017-0477-9
484	Bugge, A., Möller, S., Westfall, D. R., Tarp, J., Gejl, A. K., Wedderkopp, N., & Hillman, C. H.
485	(2018). Associations between waist circumference, metabolic risk, and executive function
486	in adolescents: A cross-sectional mediation analysis. PLoS ONE, 13(6), e1099281.
487	https://doi.org/10.1371/journal.pone.0199281
488	Callaghan, P., Khalil, E., Morres, I., & Carter, T. (2011). Pragmatic randomised controlled trial
489	of preferred intensity exercise in women living with depression. BMC Public Health,
490	11(1), 1-8. <u>https://doi.org/10.1186/1471-2458-11-465</u>
491	Chan, D. K., Lonsdale, C., Ho, P. Y., Yung, P. S., & Chan, K. M. (2009). Patient motivation and
492	adherence to postsurgery rehabilitation exercise recommendations: The influence of
493	physiotherapists' autonomy-supportive behaviors. Archives of Physical Medicine and
494	Rehabilitation, 90(12), 1977-1982. https://doi.org/10.1016/j.apmr.2009.05.024
495	Chen, B., Vansteenkiste, M., Beyers, W., Boone, L., Deci, E. L., Van der Kaap-Deeder, J.,
496	Duriez, B., Lens, W., Matos, L., Mouratidis, A., Ryan, R. M., Sheldon, K. M., Soenens, B.,
497	Van Petegem, S., & Verstuyf, J. (2015). Basic psychological need satisfaction, need
498	frustration, and need strength across four cultures. Motivation and Emotion, 39, 216-236.
499	https://doi.org/10.1007/s11031-014-9450-1
	22

- 500 Chemolli, E., & Gagné, M. (2014). Evidence against the continuum structure underlying
- 501 motivation measures derived from self-determination theory. Psychological Assessment,
- 502 26(2), 575–585. <u>https://doi.org/10.1037/a0036212</u>
- 503 Craig, C. L., Marshall, A. L., Sjöström, M, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E.,
- 504 Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical
- 505 activity questionnaire: 12-country reliability and validity: *Medicine & Science in Sports*
- 506 & Exercise, 35(8), 1381–1395. <u>https://doi.org/10.1249/01.MSS.0000078924.61453.FB</u>
- 507 Conroy, D. E., & Berry, T. R. (2017). Automatic affective evaluations of physical activity.
- 508 *Exercise and Sport Sciences Reviews*, 45(4), 230–237.
- 509 https://doi.org/10.1249/JES.00000000000120
- 510 Diehl, K., Fuchs, A. K., Rathmann, K., & Hilger-Kolb, J. (2018). Students' motivation for sport
- 511 activity and participation in university sports: A mixed-methods study. *BioMed Research*
- 512 International, 2018, 1–7. <u>https://doi.org/10.1155/2018/9524861</u>
- 513 Disabato, D. (2016, May 22). The double standard against cross-sectional mediation. David
- 514 Disabato. http://www.daviddisabato.com/blog/2016/5/22/the-double-standard-against-
- 515 <u>cross-sectional-mediation</u>
- 516 Dukes, D., Abrams, K., Adolphs, R., Ahmed, M. E., Beatty, A., Berridge, K. C., Broomhall, S.,
- 517 Brosch, T., Campos, J. J., Clay, Z., Clément, F., Cunningham, W. A., Damasio, A.,
- 518 Damasio, H., D'Arms, J., Davidson, J. W., de Gelder, B., Deonna, J., de Sousa, R., Ekman,
- 519 P., ... Sander, D. (2021). The rise of affectivism. *Nature Human Behaviour*, 5(7), 816–820.
- 520 https://doi.org/10.1038/s41562-021-01130-8
- 521 Ekkekakis, P. (2017). People have feelings! Exercise psychology in a paradigmatic transition.
- 522 *Current Opinion in Psychology*, *16*, 84-88. <u>http://dx.doi.org/10.1016/j.copsyc.2017.03.018</u>

Motivational Correlates of Exercise

523	Ekkekakis, P., & Zenko, Z. (2016). Escape from cognitivism: Exercise as hedonic experience. In
524	M. Raab, P. Wylleman, R. Seiler, AM. Elbe, & A. Hatzigeorgiadis (Eds.), Sport and
525	exercise psychology research: From theory to practice (pp. 389-414). Elsevier Academic
526	Press. https://doi.org/10.1016/B978-0-12-803634-1.00018-2
527	Ekkekakis, P., Zenko, Z., & Vazou, S. (2021). Do you find exercise pleasant or unpleasant? The
528	Affective Exercise Experiences (AFFEXX) questionnaire. Psychology of Sport and
529	Exercise, 55, 101930. https://doi.org/10.1016/j.psychsport.2021.101930
530	Fairchild, A. J., & McDaniel, H. (2017). Best (but oft-forgotten) practices: Mediation analysis.
531	The American Journal of Clinical Nutrition, 105(6), 1259-1271.
532	https://doi.org/10.3945/ajcn.117.152546
533	Gallucci, M. (2020). jAMM: jamovi Advanced Mediation Models. [jamovi module]. Retrieved
534	from <u>https://jamovi-amm.github.io/</u> .
535	Gao, Z., Podlog, L. W., & Harrison, L. (2012). College students' goal orientations, situational
536	motivation and effort/persistence in physical activity classes. Journal of Teaching in
537	Physical Education, 31(3), 246–260. https://doi.org/10.1123/jtpe.31.3.246
538	Hagger, M. S., Hardcastle, S. J., Chater, A., Mallett, C., Pal, S., & Chatzisarantis, N. L. (2014).
539	Autonomous and controlled motivational regulations for multiple health-related
540	behaviors: between- and within-participants analyses. Health Psychology and Behavioral
541	Medicine, 2(1), 565-601. https://doi.org/10.1080/21642850.2014.912945
542	Hayes, A. F., & Rockwood, N. J. (2020). Conditional process analysis: Concepts, computation,
543	and advances in the modeling of the contingencies of mechanisms. American Behavioral
544	Scientist, 64(1), 19-54. https://doi.org/10.1177/0002764219859633

Lakens, D. (2022). Sample size justification. *Collabra: Psychology*, 8(1), 33267.

546 <u>https://doi.org/10.1525/collabra.33267</u>

- 547 Lavie, C. J., Ozemek, C., Carbone, S., Katzmarzyk, P. T., & Blair, S. N. (2019). Sedentary
- 548 behavior, exercise, and cardiovascular health. *Circulation Research*, *124*(5), 799–815.

549 https://doi.org/10.1161/CIRCRESAHA.118.312669

- 550 Lauderdale, M. E., Yli-Piipari, S., Irwin, C. C., & Layne, T. E. (2015). Gender differences
- regarding motivation for physical activity among college students: A self-determination

552 approach. *The Physical Educator*, 72, 153-172 <u>https://doi.org/10.18666/TPE-2015-V72-</u>

- 553 <u>I5-4682</u>
- Lee, I-M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., & Katzmarzyk, P. T. (2012). Impact
 of physical inactivity on the world's non-communicable diseases. *Lancet*, 380(9838),
 219-229.
- 557 Leyton-Román, M., Núñez, J. L., & Jiménez-Castuera, R. (2020). The importance of supporting
- 558 student autonomy in physical education classes to improve intention to be physically

559 active. *Sustainability*, *12*(10), 1-14. <u>https://doi.org/10.3390/su12104251</u>

560 Maltagliati, S., Sarrazin, P., Fessler, L., Lebreton, M., & Cheval, B. (in press). Why people

should run after positive affective experiences instead of health benefits? Journal of Sport
and Health Science, S2095-2546(22)00105-3.

563 https://doi-org.falcon.lib.csub.edu/10.1016/j.jshs.2022.10.005

564 Markland, D., & Tobin, V. (2004). A modification to the behavioural regulation in exercise

- 565 questionnaire to include an assessment of amotivation. *Journal of Sport and Exercise*
- 566 *Psychology*, *26*(2), 191–196. <u>https://doi.org/10.1123/jsep.26.2.191</u>

567	Meh, K., Jurak, G., Sorić, M., Rocha, P., & Sember, V. (2021). Validity and reliability of IPAQ-
568	SF and GPAQ for assessing sedentary behaviour in adults in the European Union: A
569	systematic review and meta-analysis. International Journal of Environmental Research
570	and Public Health, 18(9), 1-17. https://doi.org/10.3390/ijerph18094602
571	Ntoumanis, N. (2005). A prospective study of participation in optional school physical education
572	using a self-determination theory framework. Journal of Educational Psychology, 97(3),
573	444-453. https://doi.org/10.1037/0022-0663.97.3.444
574	Quested, E., Kritz, M., Hancox, J. E., Ntoumanis, N., & Thøgersen-Ntoumani, C. (2021).
575	Promoting self-determined motivation for physical activity: From theory to intervention
576	work. In Z. Zenko & L. Jones (Eds.), Essentials of exercise and sport psychology: An
577	open access textbook (pp. 37-61). Society for Transparency, Openness, and Replication
578	in Kinesiology. <u>https://doi.org/10.51224/B1003</u>
579	R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1)
580	[Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved
581	from MRAN snapshot 2022-01-01).
582	Rhodes, R. E., & Kates, A. (2015). Can the affective response to exercise predict future motives
583	and physical activity behavior? A systematic review of published evidence. Annals of
584	Behavioral Medicine, 49(5), 715–731. <u>https://doi.org/10.1007/s12160-015-9704-5</u>
585	Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of
586	Statistical Software, 48(2), 1-36. http://www.jstatsoft.org/v48/i02/
587	Ryan, R. M., & Deci, E. L. (2000). Self-Determination theory and the facilitation of intrinsic
588	motivation, social development, and well-being. American Psychologist, 55(4), 68-78.

589	Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in
590	motivation, development, and wellness. The Guilford Press.
591	Samendinger, S., & Hill, C. R. (2021). Exercise schema and motivational regulation of college
592	students: A person-centered analysis. Psychology of Sport and Exercise, 54, 101921.
593	https://doi-org.falcon.lib.csub.edu/10.1016/j.psychsport.2021.101921
594	Sebire, S. J., Standage, M., & Vansteenkiste, M. (2009). Examining intrinsic versus extrinsic
595	exercise goals: cognitive, affective, and behavioral outcomes. Journal of Sport &
596	Exercise Psychology, 31(2), 189–210. https://doi.org/10.1123/jsep.31.2.189
597	Soetaert, K. (2019). diagram: Functions for Visualising Simple Graphs (Networks), Plotting
598	Flow Diagrams. [R package]. Retrieved from https://cran.r-project.org/package=diagram.
599	Sylvester, B. D., Standage, M., Ark, T. K., Sweet, S. N., Crocker, P. R. E., Zumbo, B. D., &
600	Beauchamp, M. R. (2014a). Is variety a spice of (an active) life?: Perceived variety,
601	exercise behavior, and the mediating role of autonomous motivation. Journal of Sport
602	and Exercise Psychology, 36(5), 516–527. <u>https://doi.org/10.1123/jsep.2014-0102</u>
603	Sylvester, B. D., Standage, M., Dowd, A. J., Martin, L. J., Sweet, S. N., & Beauchamp, M. R.
604	(2014b). Perceived variety, psychological needs satisfaction and exercise-related well-
605	being. Psychology & Health, 29(9), 1044-1061.
606	https://doi.org/10.1080/08870446.2014.907900
607	Teixeira, P. J., Carraça, E. V., Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise,

- 608 physical activity, and self-determination theory: A systematic review. *International*
- *Journal of Behavioral* Nutrition *and Physical Activity*, *9*(78), 1-30.
- The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from
- 611 <u>https://www.jamovi.org</u>.

- 612 Thoemmes, F. (2015). Reversing arrows in mediation models does not distinguish plausible
- 613 models. *Basic and Applied Social Psychology*, *37*, 226-234.

614 http://dx.doi.org/10.1080/01973533.2015.1049351

- 615 Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008).
- 616 Physical activity in the United States measured by accelerometer. *Medicine and science*
- 617 *in sports and exercise, 40*(1), 181–188. <u>https://doi.org/10.1249/mss.0b013e31815a51b3</u>
- 618 Vancini, R. L., Rayes, A. B. R., Lira, C. A. B. de, Sarro, K. J., & Andrade, M. S. (2017). Pilates
- and aerobic training improve levels of depression, anxiety and quality of life in
- 620 overweight and obese individuals. *Arquivos de Neuro-Psiquiatria*, 75(12), 850–857.
- 621 <u>https://doi.org/10.1590/0004-282x20170149</u>
- 622 Verloigne, M., Bourdauduij, I. D., Tanghe, A., D'Hondt, E., Theuwis, L., Vansteenkiste, M., &
- 623 Deforche, B. (2011). Self-determined motivation towards physical activity in adolescents
- 624 treated for obesity: An observational study. *International Journal of Behavioral Nutrition*

625 *and Physical Activity*, 8, 97. <u>https://doi.org/10.1186/1479-5868-8-97</u>

- 626 Vlachopoulos, S., P. & Neikou, E. (2006). A prospective study of the relationships of autonomy,
- 627 competence, and relatedness with exercise attendance, adherence, and dropout. The
- *Journal of Sports Medicine and Physical Fitness, 47*(4). 475-482.
- 629 Vlachopoulos, S. P., Ntoumanis, N., & Smith, A. L. (2010). The basic psychological needs in
- 630 exercise scale: Translation and evidence for cross-cultural validity. *International Journal*
- 631 *of Sport and Exercise Psychology*, 8(4), 394–412.
- 632 <u>https://doi.org/10.1080/1612197X.2010.9671960</u>

Motivational Correlates of Exercise

633	Wallhead, T. L., Garn, A. C., & Vidoni, C. (2014). Effect of a sport education program on
634	motivation for physical education and leisure-time physical activity. Research Quarterly
635	for Exercise and Sport, 85(4), 478-487. https://doi.org/10.1080/02701367.2014.961051
636	Weman-Josefsson, K., Lindwall, M., & Ivarsson, A. (2015). Need satisfaction, motivational
637	regulations and exercise: Moderation and mediation effects. International Journal of
638	Behavioral Nutrition and Physical Activity, 12(1), 67. https://doi.org/10.1186/s12966-
639	<u>015-0226-0</u>
640	Wilson, P. M., & Rogers, W. M. (2004). The relationship between perceived autonomy support,
641	exercise regulations and behavioral intentions in women. Psychology of Sport and
642	Exercise, 5(3), 229-242. https://doi.org/10.1016/S1469-0292(03)00003-7
643	Wilson, P. M., Rogers, W. M., Fraser, S. N., & Murray, T. C. (2004). Relationships between
644	exercise regulatiosn and motivational consequences in university students. Research
645	Quarterly for Exercise and Sport, 75(1), 81-91.
646	https://doi.org/10.1080/02701367.2004.10609136
647	Wilson, P. M., Sabiston, C. M., Mack, D. E., & Blanchard, C. M. (2012). On the nature and
648	function of scoring protocols used in exercise motivation research: An empirical study of
649	the behavioral regulation in exercise questionnaire. Psychology of Sport and Exercise, 13,
650	614-622. https://doi.org/10.1016/j.psychsport.2012.03.009
651	Zenko, Z., Willis, E. A., & White, D. A. (2019). Proportion of adults meeting the 2018 Physical
652	Activity Guidelines for Americans according to accelerometers. Frontiers in Public
653	Health, 7, 135. https://doi.org/10.3389/fpubh.2019.00135

655	Additional Information
656	Contributions Statement
657 658 659 660 661	 Contributed to conception and design: JN, ZZ Contributed to acquisition of data: JN, ZZ Contributed to analysis and interpretation of data: ZZ, JN Drafted and/or revised the manuscript: JN, ZZ Approved the submitted version for publication: JN, ZZ
662	Data Accessibility
663	The preregistration, data, data analysis, and data processing notes are available at
664	https://osf.io/y5guj/
665	Funding
666	The costs of this project were covered by a Student Research Scholarship from California State
667	University Bakersfield.
668	Acknowledgements
669	We thank Dr. Brian Street and Dr. Eugene Wang for their feedback as thesis committee
670	members. We are also grateful for the helpful comments from the Editor and anonymous
671	reviewers.
672	Preregistration
673	This study was preregistered. The preregistration can be found at
674	https://aspredicted.org/cw7mu.pdf
675	Conflicts of Interest
676	ZZ currently serves as the Publications Chair for the Society for Transparency, Openness, and
677	Replication in Kinesiology (STORK). He previously served as a managing editor and section
678	editor for Communications in Kinesiology. He had no input or involvement with the peer-review
679	or editorial process for this manuscript.